HOW OFTEN ARE CHAOTIC SADDLES NONHYPERBOLIC

被引:86
|
作者
LAI, YC
GREBOGI, C
YORKE, JA
KAN, I
机构
[1] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLL PK,MD 20742
[2] UNIV MARYLAND,PLASMA RES LAB,COLL PK,MD 20742
[3] UNIV MARYLAND,DEPT PHYS & ASTRON,COLL PK,MD 20742
[4] UNIV MARYLAND,DEPT MATH,COLL PK,MD 20742
[5] GEORGE MASON UNIV,DEPT MATH,FAIRFAX,VA 22030
关键词
D O I
10.1088/0951-7715/6/5/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we numerically investigate the fraction of nonhyperbolic parameter values in chaotic dynamical systems. By a nonhyperbolic parameter value we mean a parameter value at which there are tangencies between some stable and unstable manifolds. The nonhyperbolic parameter values are important because the dynamics in such cases is especially pathological. For example, near each such parameter value, there is another parameter value at which there are infinitely many coexisting attractors. In particular, Newhouse and Robinson proved that the existence of one nonhyperbolic parameter value typically implies the existence of an interval ('a Newhouse interval') of nonhyperbolic parameter values. We numerically compute the fraction of nonhyperbolic parameter values for the Henon map in the parameter range where there exist only chaotic saddles (i.e., nonattracting invariant chaotic sets). We discuss a theoretical model which predicts the fraction of nonhyperbolic parameter values for small Jacobians. Two-dimensional diffeomorphisms with similar chaotic saddles may arise in the study of Poincare return map for physical systems. Our results suggest that (1) nonhyperbolic chaotic saddles are common in chaotic dynamical systems; and (2) Newhouse intervals can be quite large in the parameter space.
引用
收藏
页码:779 / 797
页数:19
相关论文
共 50 条
  • [1] Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles
    Dhamala, M
    Lai, YC
    PHYSICAL REVIEW E, 1999, 60 (05): : 6176 - 6179
  • [2] Alfven chaotic saddles\
    Rempel, EL
    Chian, ACL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (11): : 4009 - 4017
  • [3] Blowout bifurcation of chaotic saddles
    Kapitaniak, T
    Lai, YC
    Grebogi, C
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 1999, 3 (01) : 9 - +
  • [4] Effect of noise on nonhyperbolic chaotic attractors
    Schroer, CG
    Ott, E
    Yorke, JA
    PHYSICAL REVIEW LETTERS, 1998, 81 (07) : 1397 - 1400
  • [5] COEXISTENCE OF HYPERBOLIC AND NONHYPERBOLIC CHAOTIC SCATTERING
    DROZDZ, S
    OKOLOWICZ, J
    SROKOWSKI, T
    PHYSICAL REVIEW E, 1993, 48 (06) : 4851 - 4854
  • [6] Statistical approach to nonhyperbolic chaotic systems
    Alonso, D
    MacKernan, D
    Gaspard, P
    Nicolis, G
    PHYSICAL REVIEW E, 1996, 54 (03): : 2474 - 2478
  • [7] Escaping from nonhyperbolic chaotic attractors
    Kraut, S
    Grebogi, C
    PHYSICAL REVIEW LETTERS, 2004, 92 (23) : 234101 - 1
  • [8] FRACTAL DIMENSION IN NONHYPERBOLIC CHAOTIC SCATTERING
    LAU, YT
    FINN, JM
    OTT, E
    PHYSICAL REVIEW LETTERS, 1991, 66 (08) : 978 - 981
  • [9] Searching chaotic saddles in high dimensions
    Sala, M.
    Leitao, J. C.
    Altmann, E. G.
    CHAOS, 2016, 26 (12)
  • [10] How often are chaotic transients in spatially extended ecological systems?
    Dhamala, M
    Lai, YC
    Holt, RD
    PHYSICS LETTERS A, 2001, 280 (5-6) : 297 - 302