HOW OFTEN ARE CHAOTIC SADDLES NONHYPERBOLIC

被引:86
|
作者
LAI, YC
GREBOGI, C
YORKE, JA
KAN, I
机构
[1] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLL PK,MD 20742
[2] UNIV MARYLAND,PLASMA RES LAB,COLL PK,MD 20742
[3] UNIV MARYLAND,DEPT PHYS & ASTRON,COLL PK,MD 20742
[4] UNIV MARYLAND,DEPT MATH,COLL PK,MD 20742
[5] GEORGE MASON UNIV,DEPT MATH,FAIRFAX,VA 22030
关键词
D O I
10.1088/0951-7715/6/5/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we numerically investigate the fraction of nonhyperbolic parameter values in chaotic dynamical systems. By a nonhyperbolic parameter value we mean a parameter value at which there are tangencies between some stable and unstable manifolds. The nonhyperbolic parameter values are important because the dynamics in such cases is especially pathological. For example, near each such parameter value, there is another parameter value at which there are infinitely many coexisting attractors. In particular, Newhouse and Robinson proved that the existence of one nonhyperbolic parameter value typically implies the existence of an interval ('a Newhouse interval') of nonhyperbolic parameter values. We numerically compute the fraction of nonhyperbolic parameter values for the Henon map in the parameter range where there exist only chaotic saddles (i.e., nonattracting invariant chaotic sets). We discuss a theoretical model which predicts the fraction of nonhyperbolic parameter values for small Jacobians. Two-dimensional diffeomorphisms with similar chaotic saddles may arise in the study of Poincare return map for physical systems. Our results suggest that (1) nonhyperbolic chaotic saddles are common in chaotic dynamical systems; and (2) Newhouse intervals can be quite large in the parameter space.
引用
收藏
页码:779 / 797
页数:19
相关论文
共 50 条
  • [31] A mechanism explaining the metamorphoses of KAM islands in nonhyperbolic chaotic scattering
    Alexandre R. Nieto
    Jesús M. Seoane
    Roberto Barrio
    Miguel A. F. Sanjuán
    Nonlinear Dynamics, 2022, 109 : 1123 - 1133
  • [32] Chaotic saddles and interior crises in a dissipative nontwist system
    Simile Baroni, R.
    Egydio de Carvalho, R.
    Caldas, I. L.
    Viana, R. L.
    Morrison, P. J.
    PHYSICAL REVIEW E, 2023, 107 (02)
  • [33] Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors
    Kantz, H
    Grebogi, C
    Prasad, A
    Lai, YC
    Sinde, E
    PHYSICAL REVIEW E, 2002, 65 (02):
  • [34] Relativistic quantum tunneling of a Dirac fermion in nonhyperbolic chaotic systems
    Ni, Xuan
    Huang, Liang
    Ying, Lei
    Lai, Ying-Cheng
    PHYSICAL REVIEW B, 2013, 87 (22)
  • [35] A mechanism explaining the metamorphoses of KAM islands in nonhyperbolic chaotic scattering
    Nieto, Alexandre R.
    Seoane, Jesus M.
    Barrio, Roberto
    Sanjuan, Miguel A. F.
    NONLINEAR DYNAMICS, 2022, 109 (02) : 1123 - 1133
  • [36] Effect of noise on the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors
    Anishchenko, VS
    Vadivasova, TE
    Kopeikin, AS
    Kurths, J
    Strelkova, GI
    PHYSICAL REVIEW LETTERS, 2001, 87 (05) : 54101 - 1
  • [37] Delayed Feedback Control Method for Dynamical Systems with Chaotic Saddles
    Kobayashi, Miki U.
    Aihara, Kazuyuki
    LET'S FACE CHAOS THROUGH NONLINEAR DYNAMICS, 2012, 1468 : 207 - 215
  • [38] Analysis of chaotic saddles in a nonlinear vibro-impact system
    Feng, Jinqian
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 39 - 50
  • [39] FRACTAL BOUNDARIES IN OPEN HYDRODYNAMICAL FLOWS - SIGNATURES OF CHAOTIC SADDLES
    PENTEK, A
    TOROCZKAI, Z
    TEL, T
    GREBOGI, C
    YORKE, JA
    PHYSICAL REVIEW E, 1995, 51 (05) : 4076 - 4088
  • [40] Multistability, noise, and attractor hopping: The crucial role of chaotic saddles
    Kraut, S
    Feudel, U
    PHYSICAL REVIEW E, 2002, 66 (01):