HOW OFTEN ARE CHAOTIC SADDLES NONHYPERBOLIC

被引:86
|
作者
LAI, YC
GREBOGI, C
YORKE, JA
KAN, I
机构
[1] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLL PK,MD 20742
[2] UNIV MARYLAND,PLASMA RES LAB,COLL PK,MD 20742
[3] UNIV MARYLAND,DEPT PHYS & ASTRON,COLL PK,MD 20742
[4] UNIV MARYLAND,DEPT MATH,COLL PK,MD 20742
[5] GEORGE MASON UNIV,DEPT MATH,FAIRFAX,VA 22030
关键词
D O I
10.1088/0951-7715/6/5/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we numerically investigate the fraction of nonhyperbolic parameter values in chaotic dynamical systems. By a nonhyperbolic parameter value we mean a parameter value at which there are tangencies between some stable and unstable manifolds. The nonhyperbolic parameter values are important because the dynamics in such cases is especially pathological. For example, near each such parameter value, there is another parameter value at which there are infinitely many coexisting attractors. In particular, Newhouse and Robinson proved that the existence of one nonhyperbolic parameter value typically implies the existence of an interval ('a Newhouse interval') of nonhyperbolic parameter values. We numerically compute the fraction of nonhyperbolic parameter values for the Henon map in the parameter range where there exist only chaotic saddles (i.e., nonattracting invariant chaotic sets). We discuss a theoretical model which predicts the fraction of nonhyperbolic parameter values for small Jacobians. Two-dimensional diffeomorphisms with similar chaotic saddles may arise in the study of Poincare return map for physical systems. Our results suggest that (1) nonhyperbolic chaotic saddles are common in chaotic dynamical systems; and (2) Newhouse intervals can be quite large in the parameter space.
引用
收藏
页码:779 / 797
页数:19
相关论文
共 50 条
  • [21] Chaotic saddles in nonlinear modulational interactions in a plasma
    Miranda, Rodrigo A.
    Rempel, Erico L.
    Chian, Abraham C-L.
    PHYSICS OF PLASMAS, 2012, 19 (11)
  • [22] Stability properties of nonhyperbolic chaotic attractors with respect to noise
    Kraut, S
    Grebogi, C
    PHYSICAL REVIEW LETTERS, 2004, 93 (25)
  • [23] Approximating chaotic saddles for delay differential equations
    Taylor, S. Richard
    Campbell, Sue Ann
    PHYSICAL REVIEW E, 2007, 75 (04):
  • [24] Poincare recurrence and measure of hyperbolic and nonhyperbolic chaotic attractors
    Baptista, MS
    Kraut, S
    Grebogi, C
    PHYSICAL REVIEW LETTERS, 2005, 95 (09)
  • [25] Reactive dynamics of inertial particles in nonhyperbolic chaotic flows
    Motter, AE
    Lai, YC
    Grebogi, C
    PHYSICAL REVIEW E, 2003, 68 (05):
  • [26] HOW OFTEN IS OFTEN
    HAKEL, MD
    AMERICAN PSYCHOLOGIST, 1968, 23 (07) : 533 - &
  • [27] HOW OFTEN IS OFTEN
    SMITH, WM
    AMERICAN BAR ASSOCIATION JOURNAL, 1985, 71 (NOV): : 14 - 14
  • [28] Trapping enhanced by noise in nonhyperbolic and hyperbolic chaotic scattering
    Nieto, Alexandre R.
    Seoane, Jesus M.
    Sanjuan, Miguel A. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [29] Stabilizing near-nonhyperbolic chaotic systems with applications
    Huang, DB
    PHYSICAL REVIEW LETTERS, 2004, 93 (21)
  • [30] Lagrangian chaotic saddles and objective vortices in solar plasmas
    Chian, Abraham C-L
    Silva, Suzana S. A.
    Rempel, Erico L.
    Bellot Rubio, Luis R.
    Gosic, Milan
    Kusano, Kanya
    Park, Sung-Hong
    PHYSICAL REVIEW E, 2020, 102 (06)