COEXISTENCE OF HYPERBOLIC AND NONHYPERBOLIC CHAOTIC SCATTERING

被引:7
|
作者
DROZDZ, S [1 ]
OKOLOWICZ, J [1 ]
SROKOWSKI, T [1 ]
机构
[1] FORSCHUNGSZENTRUM JULICH, FORSCHUNGSZENTRUM, INST KERNPHYS, W-5170 JULICH, GERMANY
关键词
D O I
10.1103/PhysRevE.48.4851
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Chaotic scattering at different projectile incident energies is studied for a model which involves a two-body van der Waals-type interaction. At higher energies one finds characteristics typical for hyperbolic chaotic scattering. For sufficiently low energies hyperbolic and nonhyperbolic chaotic scattering are found to coexist at the same energy. The mechanism of this coexistence is discussed in terms of the Lyapunov exponent and the fractal dimension. Arguments are put forward for an increase in the fractal dimension of the set of singularities leading to nonhyperbolic chaotic scattering.
引用
收藏
页码:4851 / 4854
页数:4
相关论文
共 50 条
  • [1] Trapping enhanced by noise in nonhyperbolic and hyperbolic chaotic scattering
    Nieto, Alexandre R.
    Seoane, Jesus M.
    Sanjuan, Miguel A. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [2] FRACTAL DIMENSION IN NONHYPERBOLIC CHAOTIC SCATTERING
    LAU, YT
    FINN, JM
    OTT, E
    PHYSICAL REVIEW LETTERS, 1991, 66 (08) : 978 - 981
  • [3] Poincare recurrence and measure of hyperbolic and nonhyperbolic chaotic attractors
    Baptista, MS
    Kraut, S
    Grebogi, C
    PHYSICAL REVIEW LETTERS, 2005, 95 (09)
  • [4] A mechanism explaining the metamorphoses of KAM islands in nonhyperbolic chaotic scattering
    Alexandre R. Nieto
    Jesús M. Seoane
    Roberto Barrio
    Miguel A. F. Sanjuán
    Nonlinear Dynamics, 2022, 109 : 1123 - 1133
  • [5] A mechanism explaining the metamorphoses of KAM islands in nonhyperbolic chaotic scattering
    Nieto, Alexandre R.
    Seoane, Jesus M.
    Barrio, Roberto
    Sanjuan, Miguel A. F.
    NONLINEAR DYNAMICS, 2022, 109 (02) : 1123 - 1133
  • [6] “Coherence–incoherence” transition in ensembles of nonlocally coupled chaotic oscillators with nonhyperbolic and hyperbolic attractors
    Nadezhda I. Semenova
    Elena V. Rybalova
    Galina I. Strelkova
    Vadim S. Anishchenko
    Regular and Chaotic Dynamics, 2017, 22 : 148 - 162
  • [7] ESCAPE EXPONENT FOR TRANSIENT CHAOS AND CHAOTIC SCATTERING IN NONHYPERBOLIC HAMILTONIAN-SYSTEMS
    PIKOVSKY, AS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08): : L477 - L481
  • [8] "Coherence-incoherence" Transition in Ensembles of Nonlocally Coupled Chaotic Oscillators with Nonhyperbolic and Hyperbolic Attractors
    Semenova, Nadezhda I.
    Rybalova, Elena V.
    Strelkova, Galina I.
    Anishchenko, Vadim S.
    REGULAR & CHAOTIC DYNAMICS, 2017, 22 (02): : 148 - 162
  • [9] Dynamics, implementation and stability of a chaotic system with coexistence of hyperbolic and non-hyperbolic equilibria
    Li, Chun-Lai
    Li, Hong-Min
    Li, Wu
    Tong, Yao-Nan
    Zhang, Jing
    Wei, Du-Qu
    Li, Fu-Dong
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 84 : 199 - 205
  • [10] Effect of noise on nonhyperbolic chaotic attractors
    Schroer, CG
    Ott, E
    Yorke, JA
    PHYSICAL REVIEW LETTERS, 1998, 81 (07) : 1397 - 1400