COEXISTENCE OF HYPERBOLIC AND NONHYPERBOLIC CHAOTIC SCATTERING

被引:7
|
作者
DROZDZ, S [1 ]
OKOLOWICZ, J [1 ]
SROKOWSKI, T [1 ]
机构
[1] FORSCHUNGSZENTRUM JULICH, FORSCHUNGSZENTRUM, INST KERNPHYS, W-5170 JULICH, GERMANY
关键词
D O I
10.1103/PhysRevE.48.4851
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Chaotic scattering at different projectile incident energies is studied for a model which involves a two-body van der Waals-type interaction. At higher energies one finds characteristics typical for hyperbolic chaotic scattering. For sufficiently low energies hyperbolic and nonhyperbolic chaotic scattering are found to coexist at the same energy. The mechanism of this coexistence is discussed in terms of the Lyapunov exponent and the fractal dimension. Arguments are put forward for an increase in the fractal dimension of the set of singularities leading to nonhyperbolic chaotic scattering.
引用
收藏
页码:4851 / 4854
页数:4
相关论文
共 50 条
  • [21] Stability properties of nonhyperbolic chaotic attractors with respect to noise
    Kraut, S
    Grebogi, C
    PHYSICAL REVIEW LETTERS, 2004, 93 (25)
  • [22] Reactive dynamics of inertial particles in nonhyperbolic chaotic flows
    Motter, AE
    Lai, YC
    Grebogi, C
    PHYSICAL REVIEW E, 2003, 68 (05):
  • [23] THE GENERALIZED THERMODYNAMIC FORMALISM APPLIED TO HYPERBOLIC AND NONHYPERBOLIC MODELS
    STOOP, R
    ACTA PHYSICA POLONICA B, 1992, 23 (04): : 323 - 329
  • [24] Stabilizing near-nonhyperbolic chaotic systems with applications
    Huang, DB
    PHYSICAL REVIEW LETTERS, 2004, 93 (21)
  • [25] A novel 4D chaotic system with nonhyperbolic hyperbolic shape equilibrium points: Analysis, circuit implementation and color image encryption
    Cai, Xinshan
    Liu, Chongxin
    Wang, Yaoyu
    Zhang, Hao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (31):
  • [26] SCALING LAWS FOR INVARIANT-MEASURES ON HYPERBOLIC AND NONHYPERBOLIC ATTRACTORS
    GRASSBERGER, P
    BADII, R
    POLITI, A
    JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (1-2) : 135 - 178
  • [27] A Novel Megastable Hamiltonian System with Infinite Hyperbolic and Nonhyperbolic Equilibria
    Leutcho, Gervais Dolvis
    Fozin, Theophile Fonzin
    Negou, Alexis Nguomkam
    Njitacke, Zeric Tabekoueng
    Pham, Viet-Thanh
    Kengne, Jacques
    Jafari, Sajad
    COMPLEXITY, 2020, 2020
  • [28] Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors
    Kantz, H
    Grebogi, C
    Prasad, A
    Lai, YC
    Sinde, E
    PHYSICAL REVIEW E, 2002, 65 (02):
  • [29] Relativistic quantum tunneling of a Dirac fermion in nonhyperbolic chaotic systems
    Ni, Xuan
    Huang, Liang
    Ying, Lei
    Lai, Ying-Cheng
    PHYSICAL REVIEW B, 2013, 87 (22)
  • [30] Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles
    Dhamala, M
    Lai, YC
    PHYSICAL REVIEW E, 1999, 60 (05): : 6176 - 6179