COEXISTENCE OF HYPERBOLIC AND NONHYPERBOLIC CHAOTIC SCATTERING

被引:7
|
作者
DROZDZ, S [1 ]
OKOLOWICZ, J [1 ]
SROKOWSKI, T [1 ]
机构
[1] FORSCHUNGSZENTRUM JULICH, FORSCHUNGSZENTRUM, INST KERNPHYS, W-5170 JULICH, GERMANY
关键词
D O I
10.1103/PhysRevE.48.4851
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Chaotic scattering at different projectile incident energies is studied for a model which involves a two-body van der Waals-type interaction. At higher energies one finds characteristics typical for hyperbolic chaotic scattering. For sufficiently low energies hyperbolic and nonhyperbolic chaotic scattering are found to coexist at the same energy. The mechanism of this coexistence is discussed in terms of the Lyapunov exponent and the fractal dimension. Arguments are put forward for an increase in the fractal dimension of the set of singularities leading to nonhyperbolic chaotic scattering.
引用
收藏
页码:4851 / 4854
页数:4
相关论文
共 50 条
  • [31] Effect of noise on the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors
    Anishchenko, VS
    Vadivasova, TE
    Kopeikin, AS
    Kurths, J
    Strelkova, GI
    PHYSICAL REVIEW LETTERS, 2001, 87 (05) : 54101 - 1
  • [32] Stability of hyperbolic and nonhyperbolic fixed points of one-dimensional maps
    Dannan, FM
    Elaydi, SN
    Ponomarenko, V
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (05) : 449 - 457
  • [33] Measuring the transition between nonhyperbolic and hyperbolic regimes in open Hamiltonian systems
    Alexandre R. Nieto
    Euaggelos E. Zotos
    Jesús M. Seoane
    Miguel A. F. Sanjuán
    Nonlinear Dynamics, 2020, 99 : 3029 - 3039
  • [34] Measuring the transition between nonhyperbolic and hyperbolic regimes in open Hamiltonian systems
    Nieto, Alexandre R.
    Zotos, Euaggelos E.
    Seoane, Jesus M.
    Sanjuan, Miguel A. F.
    NONLINEAR DYNAMICS, 2020, 99 (04) : 3029 - 3039
  • [35] Coexistence of Multiple Chaotic Attractors
    Stork, Milan
    2018 28TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2018,
  • [36] Subtle escaping modes and subset of patterns from a nonhyperbolic chaotic attractor
    Chen, Zhen
    Liu, Xianbin
    PHYSICAL REVIEW E, 2017, 95 (01)
  • [37] Characterization of the natural measure by unstable periodic orbits in nonhyperbolic chaotic systems
    Lai, YC
    PHYSICAL REVIEW E, 1997, 56 (06): : 6531 - 6539
  • [38] Topological and ergodic aspects of partially hyperbolic diffeomorphisms and nonhyperbolic step skew products
    L. J. Díaz
    K. Gelfert
    M. Rams
    Proceedings of the Steklov Institute of Mathematics, 2017, 297 : 98 - 115
  • [39] Statistics of shadowing time in nonhyperbolic chaotic systems with unstable dimension variability
    Do, Y
    Lai, YC
    PHYSICAL REVIEW E, 2004, 69 (01): : 10
  • [40] Hyperbolic diffusion in chaotic systems
    Borys, P.
    Grzywna, Z. J.
    Luczka, J.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 83 (02): : 223 - 233