Optimal Cislunar Architecture Design Using Monte Carlo Tree Search Methods

被引:3
|
作者
Klonowski, Michael [1 ]
Holzinger, Marcus J. [1 ]
Fahrner, Naomi Owens [2 ]
机构
[1] Univ Colorado, Smead Aerosp Engn Sci, 3775 Discovery Dr, Boulder, CO 80303 USA
[2] Ball Aerosp, 10 Longs Peak Dr, Broomfield, CO 80021 USA
来源
JOURNAL OF THE ASTRONAUTICAL SCIENCES | 2023年 / 70卷 / 03期
关键词
Monte Carlo Tree Search; Space domain awareness; Reinforcement learning; Cislunar architecture; MULTIOBJECTIVE OPTIMIZATION;
D O I
10.1007/s40295-023-00383-x
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A novel multi-objective Monte Carlo Tree Search (MO-MCTS) algorithm is developed and implemented for use in architecture design problems. This algorithm is used with two well-known problems with known solutions in order to verify its performance. It is then used in a highly nonlinear Cislunar architecture design problem with no known analytical solutions. The results of this implementation display the ability of MO-MCTS to effectively navigate the state space of mixed integer nonlinear programming problems and emphasize the versatility of MO-MCTS for designing critical Cislunar architecture.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Three-Head Neural Network Architecture for Monte Carlo Tree Search
    Gao, Chao
    Mueller, Martin
    Hayward, Ryan
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3762 - 3768
  • [32] AIs for Dominion Using Monte-Carlo Tree Search
    Tollisen, Robin
    Jansen, Jon Vegard
    Goodwin, Morten
    Glimsdal, Sondre
    CURRENT APPROACHES IN APPLIED ARTIFICIAL INTELLIGENCE, 2015, 9101 : 43 - 52
  • [33] RNA inverse folding using Monte Carlo tree search
    Yang, Xiufeng
    Yoshizoe, Kazuki
    Taneda, Akito
    Tsuda, Koji
    BMC BIOINFORMATICS, 2017, 18
  • [34] RNA inverse folding using Monte Carlo tree search
    Xiufeng Yang
    Kazuki Yoshizoe
    Akito Taneda
    Koji Tsuda
    BMC Bioinformatics, 18
  • [35] Natural Language Generation Using Monte Carlo Tree Search
    Kumagai, Kaori
    Kobayashi, Ichiro
    Mochihashi, Daichi
    Asoh, Hideki
    Nakamura, Tomoaki
    Nagai, Takayuki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2018, 22 (05) : 777 - 785
  • [36] Geometric Graph Matching Using Monte Carlo Tree Search
    Pinheiro, Miguel Amavel
    Kybic, Jan
    Fua, Pascal
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (11) : 2171 - 2185
  • [37] GEOMETRICAL GRAPH MATCHING USING MONTE CARLO TREE SEARCH
    Pinheiro, Miguel Amavel
    Kybic, Jan
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3145 - 3149
  • [38] Sample-Efficient Neural Architecture Search by Learning Actions for Monte Carlo Tree Search
    Wang, Linnan
    Xie, Saining
    Li, Teng
    Fonseca, Rodrigo
    Tian, Yuandong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5503 - 5515
  • [39] Using evaluation functions in Monte-Carlo Tree Search
    Lorentz, Richard
    THEORETICAL COMPUTER SCIENCE, 2016, 644 : 106 - 113
  • [40] Costly Features Classification using Monte Carlo Tree Search
    Chen, Ziheng
    Huang, Jin
    Ahn, Hongshik
    Ning, Xin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,