RNA inverse folding using Monte Carlo tree search

被引:10
|
作者
Yang, Xiufeng [1 ]
Yoshizoe, Kazuki [4 ]
Taneda, Akito [2 ]
Tsuda, Koji [1 ,3 ,4 ]
机构
[1] Univ Tokyo, Dept Computat Biol & Med Sci, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[2] Hirosaki Univ, Grad Sch Sci & Technol, 3 Bunkyo Cho, Hirosaki, Aomori 0368561, Japan
[3] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[4] RIKEN Ctr Adv Intelligence Project, Chuo Ku, 1-4-1 Nihombashi, Tokyo 1030027, Japan
来源
BMC BIOINFORMATICS | 2017年 / 18卷
关键词
Monte Carlo tree search; RNA inverse folding; Local update; Pseudoknotted structure; WEIGHTED SAMPLING ALGORITHM; SECONDARY STRUCTURE; DESIGN; PREDICTION;
D O I
10.1186/s12859-017-1882-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Artificially synthesized RNA molecules provide important ways for creating a variety of novel functional molecules. State-of-the-art RNA inverse folding algorithms can design simple and short RNA sequences of specific GC content, that fold into the target RNA structure. However, their performance is not satisfactory in complicated cases. Result: We present a new inverse folding algorithm called MCTS-RNA, which uses Monte Carlo tree search (MCTS), a technique that has shown exceptional performance in Computer Go recently, to represent and discover the essential part of the sequence space. To obtain high accuracy, initial sequences generated by MCTS are further improved by a series of local updates. Our algorithm has an ability to control the GC content precisely and can deal with pseudoknot structures. Using common benchmark datasets for evaluation, MCTS-RNA showed a lot of promise as a standard method of RNA inverse folding. Conclusion: MCTS-RNA is available at https://github.com/tsudalab/MCTS-RNA.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] RNA inverse folding using Monte Carlo tree search
    Xiufeng Yang
    Kazuki Yoshizoe
    Akito Taneda
    Koji Tsuda
    BMC Bioinformatics, 18
  • [2] Accelerating copolymer inverse design using monte carlo tree search
    Patra, Tarak K.
    Loeffler, Troy D.
    Sankaranarayanan, Subramanian K. R. S.
    NANOSCALE, 2020, 12 (46) : 23653 - 23662
  • [3] Learning the Fastest RNA Folding Path Based on Reinforcement Learning and Monte Carlo Tree Search
    Mao, Kangkun
    Xiao, Yi
    MOLECULES, 2021, 26 (15):
  • [4] Maximum Entropy Inverse Reinforcement Learning Using Monte Carlo Tree Search for Autonomous Driving
    da Silva, Junior Anderson Rodrigues
    Grassi Jr, Valdir
    Wolf, Denis Fernando
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (09) : 11552 - 11562
  • [5] Using Local Regression in Monte Carlo Tree Search
    Randrianasolo, Arisoa S.
    Pyeatt, Larry D.
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, 2012, : 500 - 503
  • [6] RNA folding kinetics using Monte Carlo and Gillespie algorithms
    Clote, Peter
    Bayegan, Amir H.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 76 (05) : 1195 - 1227
  • [7] RNA folding kinetics using Monte Carlo and Gillespie algorithms
    Peter Clote
    Amir H. Bayegan
    Journal of Mathematical Biology, 2018, 76 : 1195 - 1227
  • [8] Multiagent Monte Carlo Tree Search
    Zerbel, Nicholas
    Yliniemi, Logan
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 2309 - 2311
  • [9] Monte Carlo Tree Search with Metaheuristics
    Mandziuk, Jacek
    Walczak, Patryk
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2023, PT II, 2023, 14126 : 134 - 144
  • [10] Elastic Monte Carlo Tree Search
    Xu, Linjie
    Dockhorn, Alexander
    Perez-Liebana, Diego
    IEEE TRANSACTIONS ON GAMES, 2023, 15 (04) : 527 - 537