RNA inverse folding using Monte Carlo tree search

被引:10
|
作者
Yang, Xiufeng [1 ]
Yoshizoe, Kazuki [4 ]
Taneda, Akito [2 ]
Tsuda, Koji [1 ,3 ,4 ]
机构
[1] Univ Tokyo, Dept Computat Biol & Med Sci, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[2] Hirosaki Univ, Grad Sch Sci & Technol, 3 Bunkyo Cho, Hirosaki, Aomori 0368561, Japan
[3] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[4] RIKEN Ctr Adv Intelligence Project, Chuo Ku, 1-4-1 Nihombashi, Tokyo 1030027, Japan
来源
BMC BIOINFORMATICS | 2017年 / 18卷
关键词
Monte Carlo tree search; RNA inverse folding; Local update; Pseudoknotted structure; WEIGHTED SAMPLING ALGORITHM; SECONDARY STRUCTURE; DESIGN; PREDICTION;
D O I
10.1186/s12859-017-1882-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Artificially synthesized RNA molecules provide important ways for creating a variety of novel functional molecules. State-of-the-art RNA inverse folding algorithms can design simple and short RNA sequences of specific GC content, that fold into the target RNA structure. However, their performance is not satisfactory in complicated cases. Result: We present a new inverse folding algorithm called MCTS-RNA, which uses Monte Carlo tree search (MCTS), a technique that has shown exceptional performance in Computer Go recently, to represent and discover the essential part of the sequence space. To obtain high accuracy, initial sequences generated by MCTS are further improved by a series of local updates. Our algorithm has an ability to control the GC content precisely and can deal with pseudoknot structures. Using common benchmark datasets for evaluation, MCTS-RNA showed a lot of promise as a standard method of RNA inverse folding. Conclusion: MCTS-RNA is available at https://github.com/tsudalab/MCTS-RNA.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Costly Features Classification using Monte Carlo Tree Search
    Chen, Ziheng
    Huang, Jin
    Ahn, Hongshik
    Ning, Xin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [22] SpecMCTS: Accelerating Monte Carlo Tree Search Using Speculative Tree Traversal
    Kim, Juhwan
    Kang, Byeongmin
    Cho, Hyungmin
    IEEE ACCESS, 2021, 9 : 142195 - 142205
  • [23] Accelerating copolymer inverse design using monte carlo tree search (vol 12, pg 23653, 2020)
    Patra, Tarak K.
    Loeffler, Troy D.
    Sankaranarayanan, Subramanian K. R. S.
    NANOSCALE, 2023, 15 (39) : 16227 - 16227
  • [24] Approximation Methods for Monte Carlo Tree Search
    Aksenov, Kirill
    Panov, Aleksandr, I
    PROCEEDINGS OF THE FOURTH INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'19), 2020, 1156 : 68 - 74
  • [25] A TUTORIAL INTRODUCTION TO MONTE CARLO TREE SEARCH
    Fu, Michael C.
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 1178 - 1193
  • [26] Monte-Carlo Tree Search for Logistics
    Edelkamp, Stefan
    Gath, Max
    Greulich, Christoph
    Humann, Malte
    Herzog, Otthein
    Lawo, Michael
    COMMERCIAL TRANSPORT, 2016, : 427 - 440
  • [27] LinUCB applied to Monte Carlo tree search
    Mandai, Yusaku
    Kaneko, Tomoyuki
    THEORETICAL COMPUTER SCIENCE, 2016, 644 : 114 - 126
  • [28] Monte Carlo Tree Search for Trading and Hedging
    Vittori, Edoardo
    Likmeta, Amarildo
    Restelli, Marcello
    ICAIF 2021: THE SECOND ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, 2021,
  • [29] A Survey of Monte Carlo Tree Search Methods
    Browne, Cameron B.
    Powley, Edward
    Whitehouse, Daniel
    Lucas, Simon M.
    Cowling, Peter I.
    Rohlfshagen, Philipp
    Tavener, Stephen
    Perez, Diego
    Samothrakis, Spyridon
    Colton, Simon
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2012, 4 (01) : 1 - 43
  • [30] Nonasymptotic Analysis of Monte Carlo Tree Search
    Shah, Devavrat
    Xie, Qiaomin
    Xu, Zhi
    OPERATIONS RESEARCH, 2022, 70 (06) : 3234 - 3260