Optimal Cislunar Architecture Design Using Monte Carlo Tree Search Methods

被引:3
|
作者
Klonowski, Michael [1 ]
Holzinger, Marcus J. [1 ]
Fahrner, Naomi Owens [2 ]
机构
[1] Univ Colorado, Smead Aerosp Engn Sci, 3775 Discovery Dr, Boulder, CO 80303 USA
[2] Ball Aerosp, 10 Longs Peak Dr, Broomfield, CO 80021 USA
来源
JOURNAL OF THE ASTRONAUTICAL SCIENCES | 2023年 / 70卷 / 03期
关键词
Monte Carlo Tree Search; Space domain awareness; Reinforcement learning; Cislunar architecture; MULTIOBJECTIVE OPTIMIZATION;
D O I
10.1007/s40295-023-00383-x
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A novel multi-objective Monte Carlo Tree Search (MO-MCTS) algorithm is developed and implemented for use in architecture design problems. This algorithm is used with two well-known problems with known solutions in order to verify its performance. It is then used in a highly nonlinear Cislunar architecture design problem with no known analytical solutions. The results of this implementation display the ability of MO-MCTS to effectively navigate the state space of mixed integer nonlinear programming problems and emphasize the versatility of MO-MCTS for designing critical Cislunar architecture.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] SpecMCTS: Accelerating Monte Carlo Tree Search Using Speculative Tree Traversal
    Kim, Juhwan
    Kang, Byeongmin
    Cho, Hyungmin
    IEEE ACCESS, 2021, 9 : 142195 - 142205
  • [42] Automated Quantum Circuit Design With Nested Monte Carlo Tree Search
    Wang, Peiyong
    Usman, Muhammad
    Parampalli, Udaya
    Hollenberg, Lloyd C. L.
    Myers, Casey R.
    IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2023, 4
  • [43] Optimal state space reconstruction via Monte Carlo decision tree search
    K. Hauke Kraemer
    Maximilian Gelbrecht
    Induja Pavithran
    R. I. Sujith
    Norbert Marwan
    Nonlinear Dynamics, 2022, 108 : 1525 - 1545
  • [44] Optimal state space reconstruction via Monte Carlo decision tree search
    Kraemer, K. Hauke
    Gelbrecht, Maximilian
    Pavithran, Induja
    Sujith, R.I.
    Marwan, Norbert
    Nonlinear Dynamics, 2022, 108 (02): : 1525 - 1545
  • [45] Optimal state space reconstruction via Monte Carlo decision tree search
    Kraemer, K. Hauke
    Gelbrecht, Maximilian
    Pavithran, Induja
    Sujith, R., I
    Marwan, Norbert
    NONLINEAR DYNAMICS, 2022, 108 (02) : 1525 - 1545
  • [46] Automatic Design of PM Motor Using Monte Carlo Tree Search in Conjunction With Topology Optimization
    Sato, Hayaho
    Igarashi, Hajime
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (09)
  • [47] Optimal design for quantal bioassay via Monte Carlo methods
    Kuo, L
    Soyer, R
    Wang, F
    BAYESIAN STATISTICS 6, 1999, : 795 - 802
  • [48] Investigating the Limits of Monte-Carlo Tree Search Methods in Computer Go
    Huang, Shih-Chieh
    Mueller, Martin
    COMPUTERS AND GAMES, CG 2013, 2014, 8427 : 39 - +
  • [49] A TUTORIAL INTRODUCTION TO MONTE CARLO TREE SEARCH
    Fu, Michael C.
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 1178 - 1193
  • [50] Monte-Carlo Tree Search for Logistics
    Edelkamp, Stefan
    Gath, Max
    Greulich, Christoph
    Humann, Malte
    Herzog, Otthein
    Lawo, Michael
    COMMERCIAL TRANSPORT, 2016, : 427 - 440