Optimal Cislunar Architecture Design Using Monte Carlo Tree Search Methods

被引:3
|
作者
Klonowski, Michael [1 ]
Holzinger, Marcus J. [1 ]
Fahrner, Naomi Owens [2 ]
机构
[1] Univ Colorado, Smead Aerosp Engn Sci, 3775 Discovery Dr, Boulder, CO 80303 USA
[2] Ball Aerosp, 10 Longs Peak Dr, Broomfield, CO 80021 USA
来源
JOURNAL OF THE ASTRONAUTICAL SCIENCES | 2023年 / 70卷 / 03期
关键词
Monte Carlo Tree Search; Space domain awareness; Reinforcement learning; Cislunar architecture; MULTIOBJECTIVE OPTIMIZATION;
D O I
10.1007/s40295-023-00383-x
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A novel multi-objective Monte Carlo Tree Search (MO-MCTS) algorithm is developed and implemented for use in architecture design problems. This algorithm is used with two well-known problems with known solutions in order to verify its performance. It is then used in a highly nonlinear Cislunar architecture design problem with no known analytical solutions. The results of this implementation display the ability of MO-MCTS to effectively navigate the state space of mixed integer nonlinear programming problems and emphasize the versatility of MO-MCTS for designing critical Cislunar architecture.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Monte Carlo Tree Search as an intelligent search tool in structural design problems
    Rossi, Leonardo
    Winands, Mark H. M.
    Butenweg, Christoph
    ENGINEERING WITH COMPUTERS, 2022, 38 (04) : 3219 - 3236
  • [22] Monte Carlo Tree Search as an intelligent search tool in structural design problems
    Leonardo Rossi
    Mark H. M. Winands
    Christoph Butenweg
    Engineering with Computers, 2022, 38 : 3219 - 3236
  • [23] Multiagent Monte Carlo Tree Search
    Zerbel, Nicholas
    Yliniemi, Logan
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 2309 - 2311
  • [24] Monte Carlo Tree Search with Metaheuristics
    Mandziuk, Jacek
    Walczak, Patryk
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2023, PT II, 2023, 14126 : 134 - 144
  • [25] Elastic Monte Carlo Tree Search
    Xu, Linjie
    Dockhorn, Alexander
    Perez-Liebana, Diego
    IEEE TRANSACTIONS ON GAMES, 2023, 15 (04) : 527 - 537
  • [26] Monte Carlo Tree Search in Hex
    Arneson, Broderick
    Hayward, Ryan B.
    Henderson, Philip
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2010, 2 (04) : 251 - 258
  • [27] Monte Carlo tree search in Kriegspiel
    Ciancarini, Paolo
    Favini, Gian Piero
    ARTIFICIAL INTELLIGENCE, 2010, 174 (11) : 670 - 684
  • [28] MONTE CARLO TREE SEARCH: A TUTORIAL
    Fu, Michael C.
    2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 222 - 236
  • [29] Monte Carlo Tree Search for Quoridor
    Respall, Victor Massague
    Brown, Joseph Alexander
    Aslam, Hamna
    19TH INTERNATIONAL CONFERENCE ON INTELLIGENT GAMES AND SIMULATION (GAME-ON(R) 2018), 2018, : 5 - 9
  • [30] An Analysis of Monte Carlo Tree Search
    James, Steven
    Konidaris, George
    Rosman, Benjamin
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3576 - 3582