Gaussian fluctuations of the elephant random walk with gradually increasing memory

被引:4
|
作者
Aguech, Rafik [1 ]
El Machkouri, Mohamed [2 ]
机构
[1] King Saud Univ, Dept Stat & Operat Res, Riyadh, Saudi Arabia
[2] Univ Rouen Normandie, Lab Math Raphael Salem, UMR CNRS 6085, F-76000 St Etienne Du Rouvray, France
关键词
elephant random walk; central limit theorem; asymptotic normality; phase transition; martingale theory; Lindeberg's method;
D O I
10.1088/1751-8121/ad1c0d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The elephant random walk (ERW) is a discrete-time random walk introduced by Schutz and Trimper (2004) in order to investigate how long-range memory affects the behavior of the random walk. Its particularity is that the next step of the walker depends on its whole past through a parameter p is an element of[0,1] . In this work, we investigate the validity of the central limit theorem of the ERW when the walker has only a gradually increasing memory. Our contribution provides a positive answer to a conjecture raised in a recent work by Gut and Stadtmuller (2022 Stat. Probab. Lett. 189 109598).
引用
收藏
页数:18
相关论文
共 50 条
  • [41] On Lerch's transcendent and the Gaussian random walk
    Janssen, A. J. E. M.
    van Leeuwaarden, J. S. H.
    ANNALS OF APPLIED PROBABILITY, 2007, 17 (02): : 421 - 439
  • [42] Extremes of Shepp statistics for Gaussian random walk
    Zholud, Dmitrii
    EXTREMES, 2009, 12 (01) : 1 - 17
  • [43] Gaussian fluctuations for random walks in random mixing environments
    Francis Comets
    Ofer Zeitouni
    Israel Journal of Mathematics, 2005, 148 : 87 - 113
  • [44] Gaussian fluctuations for random walks in random mixing environments
    Comets, F
    ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) : 87 - 113
  • [45] Extremes of Shepp statistics for Gaussian random walk
    Dmitrii Zholud
    Extremes, 2009, 12
  • [46] Moments of the superdiffusive elephant random walk with general step distribution
    Kiss, Jozsef
    Veto, Balint
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [47] On the almost sure central limit theorem for the elephant random walk
    Vazquez Guevara, Victor Hugo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (47)
  • [48] Non-Gaussian propagator for elephant random walks
    da Silva, M. A. A.
    Cressoni, J. C.
    Schuetz, Gunter M.
    Viswanathan, G. M.
    Trimper, Steffen
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [49] Central limit theorem and related results for the elephant random walk
    Coletti, Cristian F.
    Gava, Renato
    Schuetz, Gunter M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (05)
  • [50] Random walk with multiple memory channels
    Saha, Surajit
    PHYSICAL REVIEW E, 2022, 106 (06)