Gaussian fluctuations of the elephant random walk with gradually increasing memory

被引:4
|
作者
Aguech, Rafik [1 ]
El Machkouri, Mohamed [2 ]
机构
[1] King Saud Univ, Dept Stat & Operat Res, Riyadh, Saudi Arabia
[2] Univ Rouen Normandie, Lab Math Raphael Salem, UMR CNRS 6085, F-76000 St Etienne Du Rouvray, France
关键词
elephant random walk; central limit theorem; asymptotic normality; phase transition; martingale theory; Lindeberg's method;
D O I
10.1088/1751-8121/ad1c0d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The elephant random walk (ERW) is a discrete-time random walk introduced by Schutz and Trimper (2004) in order to investigate how long-range memory affects the behavior of the random walk. Its particularity is that the next step of the walker depends on its whole past through a parameter p is an element of[0,1] . In this work, we investigate the validity of the central limit theorem of the ERW when the walker has only a gradually increasing memory. Our contribution provides a positive answer to a conjecture raised in a recent work by Gut and Stadtmuller (2022 Stat. Probab. Lett. 189 109598).
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Random walk with memory
    Rudnicki, R
    Wolf, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (06) : 3072 - 3083
  • [22] A strong invariance principle for the elephant random walk
    Coletti, Cristian F.
    Gava, Renato
    Schutz, Gunter M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [23] On the Multi-dimensional Elephant Random Walk
    Bercu, Bernard
    Laulin, Lucile
    JOURNAL OF STATISTICAL PHYSICS, 2019, 175 (06) : 1146 - 1163
  • [24] Entangled hidden elephant random walk model
    Souissi, Abdessatar
    Mukhamedov, Farrukh
    Soueidi, El Gheteb
    Rhaima, Mohamed
    Mukhamedova, Farzona
    CHAOS SOLITONS & FRACTALS, 2024, 186
  • [25] The elephant random walk in the triangular array setting
    Roy, Rahul
    Takei, Masato
    Tanemura, Hideki
    JOURNAL OF APPLIED PROBABILITY, 2025,
  • [26] On the Multi-dimensional Elephant Random Walk
    Bernard Bercu
    Lucile Laulin
    Journal of Statistical Physics, 2019, 175 : 1146 - 1163
  • [27] Cramer moderate deviations for the elephant random walk
    Fan, Xiequan
    Hu, Haijuan
    Ma, Xiaohui
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (02):
  • [28] Deviation inequalities for the elephant random walk with random step sizes
    Hu, Haijuan
    Fan, Xiequan
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (03)
  • [29] Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
    G. M. Borges
    A. S. Ferreira
    M. A. A. da Silva
    J. C. Cressoni
    G. M. Viswanathan
    A. M. Mariz
    The European Physical Journal B, 2012, 85
  • [30] Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
    Borges, G. M.
    Ferreira, A. S.
    da Silva, M. A. A.
    Cressoni, J. C.
    Viswanathan, G. M.
    Mariz, A. M.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (09):