Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile

被引:12
|
作者
Borges, G. M. [1 ]
Ferreira, A. S. [2 ]
da Silva, M. A. A. [3 ]
Cressoni, J. C. [3 ,4 ]
Viswanathan, G. M. [1 ,4 ]
Mariz, A. M. [1 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Fis Teor & Expt, BR-59078900 Natal, RN, Brazil
[2] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
[3] Univ Sao Paulo, FCFRP, Dept Quim & Fis, BR-14040903 Ribeirao Preto, SP, Brazil
[4] Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio, AL, Brazil
来源
EUROPEAN PHYSICAL JOURNAL B | 2012年 / 85卷 / 09期
基金
巴西圣保罗研究基金会;
关键词
ANOMALOUS DIFFUSION; DYNAMICS;
D O I
10.1140/epjb/e2012-30378-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e. g., fractional Brownian motion, Levy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation sigma t which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
    G. M. Borges
    A. S. Ferreira
    M. A. A. da Silva
    J. C. Cressoni
    G. M. Viswanathan
    A. M. Mariz
    [J]. The European Physical Journal B, 2012, 85
  • [2] Markovian embedding of non-Markovian superdiffusion
    Siegle, Peter
    Goychuk, Igor
    Talkner, Peter
    Haenggi, Peter
    [J]. PHYSICAL REVIEW E, 2010, 81 (01)
  • [3] Non-Markovian Persistent Random Walk Model for Intracellular Transport
    Korabel, Nickolay
    Al Shamsi, Hamed
    Ivanov, Alexey O.
    Fedotov, Sergei
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [4] OSCILLATORY TRANSIENTS IN A NON-MARKOVIAN RANDOM-WALK
    LAVIOLETTE, RA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (11): : 6905 - 6911
  • [5] Non-Markovian random walks with memory lapses
    Gonzalez-Navarrete, Manuel
    Lambert, Rodrigo
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (11)
  • [7] Ultraslow diffusion in an exactly solvable non-Markovian random walk
    da Silva, M. A. A.
    Viswanathan, G. M.
    Cressoni, J. C.
    [J]. PHYSICAL REVIEW E, 2014, 89 (05):
  • [8] Memory Tensor for Non-Markovian Dynamics with Random Hamiltonian
    Teretenkov, Alexander Evgen'evich
    [J]. MATHEMATICS, 2023, 11 (18)
  • [9] A Non-Markovian Random Walk Underlies a Stochastic Model of Spike-Timing-Dependent Plasticity
    Elliott, Terry
    [J]. NEURAL COMPUTATION, 2010, 22 (05) : 1180 - 1230
  • [10] Log-periodicity can appear in a non-Markovian random walk even if there is perfect memory of its history
    de Lacerda, K. J. C. C.
    Cressoni, J. C.
    Viswanathan, G. M.
    da Silva, M. A. A.
    [J]. EPL, 2020, 130 (02)