Markovian embedding of non-Markovian superdiffusion

被引:66
|
作者
Siegle, Peter [1 ]
Goychuk, Igor [1 ]
Talkner, Peter [1 ]
Haenggi, Peter [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
关键词
ANOMALOUS DIFFUSION; TIME EVOLUTION; EQUATIONS; RELAXATION; WALKS;
D O I
10.1103/PhysRevE.81.011136
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider different Markovian embedding schemes of non-Markovian stochastic processes that are described by generalized Langevin equations and obey thermal detailed balance under equilibrium conditions. At thermal equilibrium, superdiffusive behavior can emerge if the total integral of the memory kernel vanishes. Such a situation of vanishing static friction is caused by a super-Ohmic thermal bath. One of the simplest models of ballistic superdiffusion is determined by a biexponential memory kernel that was proposed by [Bao J. Stat. Phys. 114, 503 (2004)]. We show that this non-Markovian model has infinitely many different four-dimensional Markovian embeddings. Implementing numerically the simplest one, we demonstrate that (i) the presence of a periodic potential with arbitrarily low barriers changes the asymptotic large-time behavior from free ballistic superdiffusion into normal diffusion; (ii) an additional biasing force renders the asymptotic dynamics superdiffusive again. The development of transients that display a qualitatively different behavior compared to the true large-time asymptotics presents a general feature of this non-Markovian dynamics. These transients though may be extremely long. As a consequence, they can be even mistaken as the true asymptotics. We find that such intermediate asymptotics exhibit a giant enhancement of superdiffusion in tilted washboard potentials and it is accompanied by a giant transient superballistic current growing proportional to t(alpha eff) with an exponent alpha(eff) that can exceed the ballistic value of 2.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Markovian embedding of fractional superdiffusion
    Siegle, P.
    Goychuk, I.
    Haenggi, P.
    [J]. EPL, 2011, 93 (02)
  • [2] Markovian embedding procedures for non-Markovian stochastic Schrodinger equations
    Li, Xiantao
    [J]. PHYSICS LETTERS A, 2021, 387
  • [3] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Jing Nie
    Yingshuang Liang
    Biao Wang
    Xiuyi Yang
    [J]. International Journal of Theoretical Physics, 2021, 60 : 2889 - 2900
  • [4] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Nie, Jing
    Liang, Yingshuang
    Wang, Biao
    Yang, Xiuyi
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) : 2889 - 2900
  • [5] Embedding non-Markovian quantum collisional models into bipartite Markovian dynamics
    Budini, Adrian A.
    [J]. PHYSICAL REVIEW A, 2013, 88 (03):
  • [6] System-environment correlations and Markovian embedding of quantum non-Markovian dynamics
    Campbell, Steve
    Ciccarello, Francesco
    Palma, G. Massimo
    Vacchini, Bassano
    [J]. PHYSICAL REVIEW A, 2018, 98 (01)
  • [7] Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
    Borges, G. M.
    Ferreira, A. S.
    da Silva, M. A. A.
    Cressoni, J. C.
    Viswanathan, G. M.
    Mariz, A. M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (09):
  • [8] Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
    G. M. Borges
    A. S. Ferreira
    M. A. A. da Silva
    J. C. Cressoni
    G. M. Viswanathan
    A. M. Mariz
    [J]. The European Physical Journal B, 2012, 85
  • [9] Markovian and Non-Markovian Quantum Measurements
    Glick, Jennifer R.
    Adami, Christoph
    [J]. FOUNDATIONS OF PHYSICS, 2020, 50 (09) : 1008 - 1055
  • [10] Markovian and Non-Markovian Quantum Measurements
    Jennifer R. Glick
    Christoph Adami
    [J]. Foundations of Physics, 2020, 50 : 1008 - 1055