Log-periodicity can appear in a non-Markovian random walk even if there is perfect memory of its history

被引:1
|
作者
de Lacerda, K. J. C. C. [1 ]
Cressoni, J. C. [2 ]
Viswanathan, G. M. [3 ,4 ]
da Silva, M. A. A. [2 ]
机构
[1] Univ Sao Paulo, Dept Fis, FFCLRP, BR-14040901 Ribeirao Preto, SP, Brazil
[2] Univ Sao Paulo, Dept Ciencias Biomol, FCFRP, BR-14040903 Ribeirao Preto, SP, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Phys, BR-59078900 Natal, RN, Brazil
[4] Univ Fed Rio Grande do Norte, Natl Inst Sci & Technol Complex Syst, BR-59078900 Natal, RN, Brazil
基金
瑞典研究理事会; 巴西圣保罗研究基金会;
关键词
02; 50; -r; 05; 70; Ln; 40; -a; ANOMALOUS DIFFUSION; NEGATIVE FEEDBACK; KINETIC-THEORY; MOTION; OSCILLATIONS; EQUATION;
D O I
10.1209/0295-5075/130/20004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exactly solvable Elephant Random Walk (ERW) model introduced by Schutz and Trimper 15 years ago stimulated research that led to many new insights and advances in understanding anomalous diffusion. Such models have two distinct ingredients: i) long-range -possibly complete- memory of the past behavior and ii) a decision-making rule that makes use of the memory. These models are memory-neutral: the decision-making rule does not distinguish between short-term (or recent) memories and long-term (or old) memories. Here we relax the condition of memory neutrality, so that memory and decision-making become interconnected. We investigate the diffusive properties of random walks that evolve according to memory-biased decision processes and find remarkably rich phase diagrams, including a phase of log-periodic superdiffusion that may be associated with old memory and negative feedback regulating mechanisms. Our results overturn the conventional wisdom concerning the origin of log-periodicity in non-Markovian models. All previously known non-Markovian random walk models that exhibit log-periodicities in their behavior have incomplete (or damaged) memory of their history. Here we show that log-periodicity can appear even if the memory is complete, so long as there is a memory bias.
引用
收藏
页数:7
相关论文
共 6 条
  • [1] Sudden onset of log-periodicity and superdiffusion in non-Markovian random walks with amnestically induced persistence: exact results
    M. L. Felisberto
    F. S. Passos
    A. S. Ferreira
    M. A.A. da Silva
    J. C. Cressoni
    G. M. Viswanathan
    [J]. The European Physical Journal B, 2009, 72 : 427 - 433
  • [2] Sudden onset of log-periodicity and superdiffusion in non-Markovian random walks with amnestically induced persistence: exact results
    Felisberto, M. L.
    Passos, F. S.
    Ferreira, A. S.
    da Silva, M. A. A.
    Cressoni, J. C.
    Viswanathan, G. M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2009, 72 (03): : 427 - 433
  • [3] Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
    G. M. Borges
    A. S. Ferreira
    M. A. A. da Silva
    J. C. Cressoni
    G. M. Viswanathan
    A. M. Mariz
    [J]. The European Physical Journal B, 2012, 85
  • [4] Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
    Borges, G. M.
    Ferreira, A. S.
    da Silva, M. A. A.
    Cressoni, J. C.
    Viswanathan, G. M.
    Mariz, A. M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (09):
  • [5] Elephants can always remember:: Exact long-range memory effects in a non-Markovian random walk -: art. no. 045101
    Schütz, GM
    Trimper, S
    [J]. PHYSICAL REVIEW E, 2004, 70 (04):
  • [6] Non-Markovian stochastic Liouville equation and its Markovian representation: Extensions of the continuous-time random-walk approach
    Shushin, A. I.
    [J]. PHYSICAL REVIEW E, 2008, 77 (03):