Gaussian fluctuations of the elephant random walk with gradually increasing memory

被引:4
|
作者
Aguech, Rafik [1 ]
El Machkouri, Mohamed [2 ]
机构
[1] King Saud Univ, Dept Stat & Operat Res, Riyadh, Saudi Arabia
[2] Univ Rouen Normandie, Lab Math Raphael Salem, UMR CNRS 6085, F-76000 St Etienne Du Rouvray, France
关键词
elephant random walk; central limit theorem; asymptotic normality; phase transition; martingale theory; Lindeberg's method;
D O I
10.1088/1751-8121/ad1c0d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The elephant random walk (ERW) is a discrete-time random walk introduced by Schutz and Trimper (2004) in order to investigate how long-range memory affects the behavior of the random walk. Its particularity is that the next step of the walker depends on its whole past through a parameter p is an element of[0,1] . In this work, we investigate the validity of the central limit theorem of the ERW when the walker has only a gradually increasing memory. Our contribution provides a positive answer to a conjecture raised in a recent work by Gut and Stadtmuller (2022 Stat. Probab. Lett. 189 109598).
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Universal fluctuations in the support of the random walk
    F. van Wijland
    H. J. Hilhorst
    Journal of Statistical Physics, 1997, 89 : 119 - 134
  • [32] Universal fluctuations in the support of the random walk
    vanWijland, F
    Hilhorst, HJ
    JOURNAL OF STATISTICAL PHYSICS, 1997, 89 (1-2) : 119 - 134
  • [33] Cumulants of the maximum of the Gaussian random walk
    Janssen, A. J. E. M.
    van Leeuwaarden, J. S. H.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (12) : 1928 - 1959
  • [34] Gaussian Fluctuation for Superdiffusive Elephant Random Walks
    Naoki Kubota
    Masato Takei
    Journal of Statistical Physics, 2019, 177 : 1157 - 1171
  • [35] Gaussian Fluctuation for Superdiffusive Elephant Random Walks
    Kubota, Naoki
    Takei, Masato
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (06) : 1157 - 1171
  • [36] Hypergeometric identities arising from the elephant random walk
    Bercu, Bernard
    Chabanol, Marie-Line
    Ruch, Jean-Jacques
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 480 (01)
  • [37] The enhanced strong invariance principle for the elephant random walk
    Hu, Zhishui
    Feng, Qunqiang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (03) : 834 - 847
  • [38] RESIDUAL DIFFUSIVITY IN ELEPHANT RANDOM WALK MODELS WITH STOPS
    Lyu, Jiancheng
    Xin, Jack
    Yu, Yifeng
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (07) : 2033 - 2045
  • [39] ANOMALOUS FLUCTUATIONS IN RANDOM-WALK DYNAMICS
    GOLDHIRSCH, I
    NOSKOWICZ, SH
    JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (1-2) : 291 - 314
  • [40] Gaussian fluctuations for products of random matrices
    Gorin, Vadim
    Sun, Yi
    AMERICAN JOURNAL OF MATHEMATICS, 2022, 144 (02) : 287 - 393