Extremes of Shepp statistics for Gaussian random walk

被引:0
|
作者
Dmitrii Zholud
机构
[1] Chalmers University of Technology and Göteborg University,Department of Mathematical Statistics
来源
Extremes | 2009年 / 12卷
关键词
Gaussian random walk increments; Shepp statistics; High excursions; Extreme values; Large deviations; Moderate deviations; Asymptotic behavior; Distribution tail; Gumbel law; Limit theorems; Weak theorems; Primary—60G70; Secondary—62P10; 60F10;
D O I
暂无
中图分类号
学科分类号
摘要
Let (ξi, i ≥ 1) be a sequence of independent standard normal random variables and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_k=\sum\limits_{i=1}^{k}\xi_i$\end{document} be the corresponding random walk. We study the renormalized Shepp statistic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_T^{(N)}=\frac{1}{\sqrt{N}}\max\limits_{1\leq k\leq TN}\max\limits_{1\leq L\leq N}(S_{k+L-1}-S_{k-1})$\end{document} and determine asymptotic expressions for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textbf{\textrm{P}}\left(M_T^{(N)}>u\right)$\end{document} when u,N and T→ ∞ in a synchronized way. There are three types of relations between u and N that give different asymptotic behavior. For these three cases we establish the limiting Gumbel distribution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_T^{(N)}$\end{document} when T,N→ ∞ and present corresponding normalization sequences.
引用
收藏
相关论文
共 50 条
  • [1] Extremes of Shepp statistics for Gaussian random walk
    Zholud, Dmitrii
    [J]. EXTREMES, 2009, 12 (01) : 1 - 17
  • [2] Extremes of a Type of Locally Stationary Gaussian Random Fields with Applications to Shepp Statistics
    Zhongquan Tan
    Shengchao Zheng
    [J]. Journal of Theoretical Probability, 2020, 33 : 2258 - 2279
  • [3] Extremes of a Type of Locally Stationary Gaussian Random Fields with Applications to Shepp Statistics
    Tan, Zhongquan
    Zheng, Shengchao
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (04) : 2258 - 2279
  • [4] Extremes of Shepp statistics for the Wiener process
    Dmitrii Zholud
    [J]. Extremes, 2008, 11 : 339 - 351
  • [5] Extremes of Shepp statistics for the Wiener process
    Zholud, Dmitrii
    [J]. EXTREMES, 2008, 11 (04) : 339 - 351
  • [6] Extremes of Shepp statistics for fractional Brownian motion
    TAN ZhongQuan
    YANG Yang
    [J]. Science China Mathematics, 2015, 58 (08) : 1779 - 1794
  • [7] Extremes of Shepp statistics for fractional Brownian motion
    ZhongQuan Tan
    Yang Yang
    [J]. Science China Mathematics, 2015, 58 : 1779 - 1794
  • [8] Extremes of Shepp statistics for fractional Brownian motion
    Tan ZhongQuan
    Yang Yang
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (08) : 1779 - 1794
  • [9] Nonlinear field line random walk for non-Gaussian statistics
    Shalchi, A.
    le Roux, J. A.
    Webb, G. M.
    Zank, G. P.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (34)
  • [10] The extremes of a random scenery as seen by a random walk in a random environment
    Franke, Brice
    Saigo, Tatsuhiko
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (08) : 1025 - 1030