Extremes of Shepp statistics for Gaussian random walk

被引:0
|
作者
Dmitrii Zholud
机构
[1] Chalmers University of Technology and Göteborg University,Department of Mathematical Statistics
来源
Extremes | 2009年 / 12卷
关键词
Gaussian random walk increments; Shepp statistics; High excursions; Extreme values; Large deviations; Moderate deviations; Asymptotic behavior; Distribution tail; Gumbel law; Limit theorems; Weak theorems; Primary—60G70; Secondary—62P10; 60F10;
D O I
暂无
中图分类号
学科分类号
摘要
Let (ξi, i ≥ 1) be a sequence of independent standard normal random variables and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_k=\sum\limits_{i=1}^{k}\xi_i$\end{document} be the corresponding random walk. We study the renormalized Shepp statistic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_T^{(N)}=\frac{1}{\sqrt{N}}\max\limits_{1\leq k\leq TN}\max\limits_{1\leq L\leq N}(S_{k+L-1}-S_{k-1})$\end{document} and determine asymptotic expressions for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textbf{\textrm{P}}\left(M_T^{(N)}>u\right)$\end{document} when u,N and T→ ∞ in a synchronized way. There are three types of relations between u and N that give different asymptotic behavior. For these three cases we establish the limiting Gumbel distribution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_T^{(N)}$\end{document} when T,N→ ∞ and present corresponding normalization sequences.
引用
下载
收藏
相关论文
共 50 条
  • [21] Statistics of largest loops in a random walk
    Ertas, D
    Kantor, Y
    PHYSICAL REVIEW E, 1997, 55 (01): : 261 - 265
  • [22] Record statistics for random walk bridges
    Godreche, Claude
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
  • [23] Extremes of Gaussian fields with a smooth random variance
    Popivoda, Goran
    Stamatovic, Sinisa
    STATISTICS & PROBABILITY LETTERS, 2016, 110 : 185 - 190
  • [24] The limit theorems on extremes for Gaussian random fields
    Tan, Zhongquan
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (02) : 436 - 444
  • [25] Extremes of Gaussian processes with a smooth random variance
    Huesler, Juerg
    Piterbarg, Vladimir
    Rumyantseva, Ekaterina
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (11) : 2592 - 2605
  • [26] Extremes of Gaussian Processes with a Smooth Random Trend
    Piterbarg, Vladimir
    Popivoda, Goran
    Stamatovic, Sinisa
    FILOMAT, 2017, 31 (08) : 2267 - 2279
  • [27] EXTREMES OF MULTIDIMENSIONAL STATIONARY GAUSSIAN RANDOM FIELDS
    Soja-Kukiela, Natalia
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2018, 38 (01): : 191 - 207
  • [28] EXTREMES OF A CLASS OF NONHOMOGENEOUS GAUSSIAN RANDOM FIELDS
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Ji, Lanpeng
    ANNALS OF PROBABILITY, 2016, 44 (02): : 984 - 1012
  • [29] LARGE DEVIATIONS OF SHEPP STATISTICS
    Shklyaev, A. V.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (04) : 722 - 729
  • [30] On Lerch's transcendent and the Gaussian random walk
    Janssen, A. J. E. M.
    van Leeuwaarden, J. S. H.
    ANNALS OF APPLIED PROBABILITY, 2007, 17 (02): : 421 - 439