Extremes of Shepp statistics for Gaussian random walk

被引:0
|
作者
Dmitrii Zholud
机构
[1] Chalmers University of Technology and Göteborg University,Department of Mathematical Statistics
来源
Extremes | 2009年 / 12卷
关键词
Gaussian random walk increments; Shepp statistics; High excursions; Extreme values; Large deviations; Moderate deviations; Asymptotic behavior; Distribution tail; Gumbel law; Limit theorems; Weak theorems; Primary—60G70; Secondary—62P10; 60F10;
D O I
暂无
中图分类号
学科分类号
摘要
Let (ξi, i ≥ 1) be a sequence of independent standard normal random variables and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_k=\sum\limits_{i=1}^{k}\xi_i$\end{document} be the corresponding random walk. We study the renormalized Shepp statistic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_T^{(N)}=\frac{1}{\sqrt{N}}\max\limits_{1\leq k\leq TN}\max\limits_{1\leq L\leq N}(S_{k+L-1}-S_{k-1})$\end{document} and determine asymptotic expressions for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textbf{\textrm{P}}\left(M_T^{(N)}>u\right)$\end{document} when u,N and T→ ∞ in a synchronized way. There are three types of relations between u and N that give different asymptotic behavior. For these three cases we establish the limiting Gumbel distribution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_T^{(N)}$\end{document} when T,N→ ∞ and present corresponding normalization sequences.
引用
下载
收藏
相关论文
共 50 条
  • [31] Extremes of Gaussian processes with smooth random expectation and smooth random variance
    Piterbarg, Vladimir
    Popivoda, Goran
    Stamatovic, Sinisa
    LITHUANIAN MATHEMATICAL JOURNAL, 2017, 57 (01) : 128 - 141
  • [32] Extremes of Gaussian processes with smooth random expectation and smooth random variance
    Vladimir Piterbarg
    Goran Popivoda
    Siniša Stamatović
    Lithuanian Mathematical Journal, 2017, 57 : 128 - 141
  • [33] A random walk approach to linear statistics in random tournament ensembles
    Joyner, Christopher H.
    Smilansky, Uzy
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [34] Record statistics of continuous time random walk
    Sabhapandit, Sanjib
    EPL, 2011, 94 (02)
  • [35] Information Functionals with Applications to Random Walk and Statistics
    Heyer H.
    Journal of Statistical Theory and Practice, 2015, 9 (4) : 896 - 933
  • [36] Scaling transformation of random walk and generalized statistics
    Oliveira, FA
    Cordeiro, JA
    Chaves, AS
    Mello, BA
    Xavier, IM
    PHYSICA A, 2001, 295 (1-2): : 201 - 208
  • [37] RANDOM-WALK STATISTICS ON FRACTAL STRUCTURES
    RAMMAL, R
    JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (5-6) : 547 - 560
  • [38] Gap statistics close to the quantile of a random walk
    Lacroix-A-Chez-Toine, Bertrand
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (31)
  • [39] SIMPLE RANDOM WALK AND RANK ORDER STATISTICS
    DWASS, M
    ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (04): : 1042 - &
  • [40] Record statistics and persistence for a random walk with a drift
    Majumdar, Satya N.
    Schehr, Gregory
    Wergen, Gregor
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (35)