III-nitride nanowires for emissive display technology

被引:3
|
作者
Vignesh, Veeramuthu [1 ]
Wu, Yuanpeng [2 ]
Kim, Sung-Un [1 ]
Oh, Jeong-Kyun [1 ]
Bagavath, Chandran [1 ]
Um, Dae-Young [1 ]
Mi, Zetian [2 ,3 ]
Ra, Yong-Ho [1 ,4 ]
机构
[1] JeonbukNat Univ JBNU, Coll Engn, Res Ctr Adv Mat Dev RCAMD, Div Adv Mat Engn, Jeonju, South Korea
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[4] Jeonbuk Natl Univ JBNU, Coll Engn, Res Ctr Adv Mat Dev RCAMD, Div Adv Mat Engn, 567 Baekje Daero, Jeonju 54896, South Korea
基金
新加坡国家研究基金会;
关键词
mu-LED; full-color LED; InGaN nanowires; multi-quantum well (MQW); display technology; LIGHT-EMITTING-DIODES; INTERNAL QUANTUM EFFICIENCY; SELECTIVE-AREA GROWTH; VAPOR-PHASE EPITAXY; GAN NANOWIRES; PHOSPHOR-FREE; INGAN NANOWIRES; SEMICONDUCTOR NANOWIRES; OPTICAL-PROPERTIES; SINGLE-CHIP;
D O I
10.1080/15980316.2023.2282937
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The field of III-nitride (InGaN) nanowire micro light-emitting diode (mu -LED) displays is rapidly expanding and holds great promise, thanks to their chemical stability and outstanding performance across the entire visible spectrum. Notably, III-nitride (InGaN) nanowires, free from compositional substitutions, dislocations, and piezoelectric polarization effects associated with lateral strain relaxation with large surface-to-bulk-volume ratio, are advantage-missing in traditional planar counterparts. This comprehensive overview examines the potential landscape, associated challenges, strategies to overcome them, and opportunities for the development of advanced mu -LED displays with vibrant and accurate color representation, contributing to the advancement of next-generation display technologies. This study also covers the current obstacles faced by III-nitride (InGaN) nanowire-mu -LED displays and possible solutions to address them.
引用
收藏
页码:13 / 59
页数:47
相关论文
共 50 条
  • [31] III-nitride photonic cavities
    Institute of Physics, École Polytechnique Fédérale de Lausanne , Lausanne
    CH-1015, Switzerland
    Nanophotonics, 2020, 3 (569-598) : 569 - 598
  • [32] III-Nitride High Voltage Nitride Electronics
    Spencer, M. G.
    Schaff, William
    GALLIUM NITRIDE AND SILICON CARBIDE POWER TECHNOLOGIES 2, 2012, 50 (03): : 145 - 152
  • [33] III-Nitride nanowire optoelectronics
    Zhao, Songrui
    Nguyen, Hieu P. T.
    Kibria, Md. G.
    Mi, Zetian
    PROGRESS IN QUANTUM ELECTRONICS, 2015, 44 : 14 - 68
  • [34] III-Nitride avalanche photodiodes
    McClintock, Ryan
    Pau, Jose L.
    Bayram, Can
    Fain, Bruno
    Giedraitis, Paul
    Razeghi, Manijeh
    Ulmer, Melville P.
    QUANTUM SENSING AND NANOPHOTONIC DEVICES VI, 2009, 7222
  • [35] III-Nitride Semiconductor Photoelectrodes
    Fujii, Katsushi
    SEMICONDUCTORS FOR PHOTOCATALYSIS, 2017, 97 : 139 - 183
  • [36] III-nitride UV devices
    Khan, MA
    Shatalov, M
    Maruska, HP
    Wang, HM
    Kuokstis, E
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (10): : 7191 - 7206
  • [37] Doping of III-nitride materials
    Pampili, Pietro
    Parbrook, Peter J.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 62 : 180 - 191
  • [38] III-Nitride vertical devices
    Oka, Tohru
    III-NITRIDE ELECTRONIC DEVICES, 2019, 102 : 219 - 242
  • [39] III-nitride photonic cavities
    Butte, Raphael
    Grandjean, Nicolas
    NANOPHOTONICS, 2020, 9 (03) : 569 - 598
  • [40] III-nitride blue microdisplays
    Jiang, HX
    Jin, SX
    Li, J
    Shakya, J
    Lin, JY
    APPLIED PHYSICS LETTERS, 2001, 78 (09) : 1303 - 1305