PV Panel Model Parameter Estimation by Using Neural Network

被引:5
|
作者
Lo, Wai Lun [1 ]
Chung, Henry Shu Hung [2 ]
Hsung, Richard Tai Chiu [1 ]
Fu, Hong [3 ]
Shen, Tak Wai [1 ]
机构
[1] Hong Kong Chu Hai Coll, Dept Comp Sci, 80 Castle Peak Rd, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[3] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China
关键词
model parameters estimation; neural network; photovoltaic panel; maximum power point; POWER POINT TRACKING; ELECTRICAL CHARACTERISTICS; PHOTOVOLTAIC ARRAYS; IMPLEMENTATION; SIMULATION; DESIGN; MODULE;
D O I
10.3390/s23073657
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Photovoltaic (PV) panels have been widely used as one of the solutions for green energy sources. Performance monitoring, fault diagnosis, and Control of Operation at Maximum Power Point (MPP) of PV panels became one of the popular research topics in the past. Model parameters could reflect the health conditions of a PV panel, and model parameter estimation can be applied to PV panel fault diagnosis. In this paper, we will propose a new algorithm for PV panel model parameters estimation by using a Neural Network (ANN) with a Numerical Current Prediction (NCP) layer. Output voltage and current signals (VI) after load perturbation are observed. An ANN is trained to estimate the PV panel model parameters, which is then fined tuned by the NCP to improve the accuracy to about 6%. During the testing stage, VI signals are input into the proposed ANN-NCP system. PV panel model parameters can then be estimated by the proposed algorithms, and the estimated model parameters can be then used for fault detection, health monitoring, and tracking operating points for MPP conditions.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Photovoltaic (PV) Parameter Estimation of a Multicrystalline Panel Using Developed Iterative and Non-Iterative Methods
    Obbadi, Abdellatif
    Errami, Youssef
    Elfajri, Abdelkrim
    Agunaou, Mustapha
    Benhmida, Mohammadi
    Sahnoun, Smail
    PROCEEDINGS OF 2015 3RD IEEE INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC'15), 2015, : 55 - 60
  • [22] Parameter estimation of partial differential equations using artificial neural network
    Jamili, Elnaz
    Dua, Vivek
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 147
  • [23] Parameter Estimation of General Regression Neural Network Using Bayesian Approach
    Choir, Achmad Syahrul
    Prasetyo, Rindang Bangun
    Ulama, Brodjol Sutijo Suprih
    Iriawan, Nur
    Fitriasari, Kartika
    Dokhi, Mohammad
    PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: ENHANCING THE ROLE OF MATHEMATICS IN INTERDISCIPLINARY RESEARCH, 2016, 1707
  • [24] Transformation parameter estimation using parallel output based neural network
    Hazra, Joydev
    Chowdhury, Aditi Roy
    APPLIED SOFT COMPUTING, 2016, 46 : 868 - 874
  • [25] Rotorcraft parameter estimation using radial basis function neural network
    Kumar, Rajan
    Ganguli, Ranjan
    Omkar, S. N.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (02) : 584 - 597
  • [26] Estimation of the Smoothing Parameter in Probabilistic Neural Network Using Evolutionary Algorithms
    Shraddha M. Naik
    Ravi Prasad K. Jagannath
    Venkatanareshbabu Kuppili
    Arabian Journal for Science and Engineering, 2020, 45 : 2945 - 2955
  • [27] On Parameter Estimation of Control Chart Patterns Using RBF Neural Network
    Yang, Miin-Shen
    Yang, Jenn-Hwai
    ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 1489 - 1493
  • [28] Estimation of the Smoothing Parameter in Probabilistic Neural Network Using Evolutionary Algorithms
    Naik, Shraddha M.
    Jagannath, Ravi Prasad K.
    Kuppili, Venkatanareshbabu
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (04) : 2945 - 2955
  • [29] Parameter estimation of UAV from flight data using neural network
    Dhayalan, R.
    Saderla, Subrahmanyam
    Ghosh, Ajoy Kanti
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2018, 90 (02): : 302 - 311
  • [30] Deep Neural Network Model-based Parameter Estimation Method Using Transmissibility of Cantilevered Beam
    Song, Byoung-Gyu
    Kang, Namcheol
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2022, 46 (09) : 819 - 826