Parameter Estimation of General Regression Neural Network Using Bayesian Approach

被引:0
|
作者
Choir, Achmad Syahrul [1 ,2 ]
Prasetyo, Rindang Bangun [1 ,2 ]
Ulama, Brodjol Sutijo Suprih [1 ]
Iriawan, Nur [1 ]
Fitriasari, Kartika [1 ]
Dokhi, Mohammad [3 ]
机构
[1] Inst Teknol Sepuluh Nopember ITS, Dept Stat, Surabaya, East Java, Indonesia
[2] Stat Indonesia, Jakarta, Indonesia
[3] Inst Stat STIS, Dept Stat, Jakarta, Indonesia
关键词
Bayesian; MCMC; MBGRNN; Mixture; BUGS;
D O I
10.1063/1.4940858
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
General Regression Neural Network (GRNN) has been applied in a large number of forecasting/prediction problem. Generally, there are two types of GRNN: GRNN which is based on kernel density; and Mixture Based GRNN (MBGRNN) which is based on adaptive mixture model. The main problem on GRNN modeling lays on how its parameters were estimated. In this paper, we propose Bayesian approach and its computation using Markov Chain Monte Carlo (MCMC) algorithms for estimating the MBGRNN parameters. This method is applied in simulation study. In this study, its performances are measured by using MAPE, MAE and RMSE. The application of Bayesian method to estimate MBGRNN parameters using MCMC is straightforward but it needs much iteration to achieve convergence.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Bayesian estimation of the biasing parameter for ridge regression: A novel approach
    Rashid, Fareeha
    Altaf, Saima
    Aslam, Muhammad
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (12) : 7215 - 7225
  • [2] A Bayesian Approach to Parameter Estimation in Simplex Regression Model: A Comparison with Beta Regression
    Omar Lopez, Freddy
    [J]. REVISTA COLOMBIANA DE ESTADISTICA, 2013, 36 (01): : 1 - 21
  • [3] Estimation of the particle size distribution of a latex using a general regression neural network
    Stegmayer, G.
    Vega, J.
    Gugliotta, L.
    Chiotti, O.
    [J]. ARTIFICIAL INTELLIGENCE IN THEORY AND PRACTICE II, 2008, 276 : 255 - 264
  • [4] A NEURAL NETWORK-AUGMENTED BAYESIAN APPROACH TO UNCERTAIN PARAMETER ESTIMATION IN NONLINEAR DYNAMIC SYSTEMS
    Zakeri, Roja
    Shankar, Praveen
    [J]. PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 5, 2022,
  • [5] Earthquake ground-motion duration estimation using general regression neural network
    Yaghmaei-Sabegh, S.
    [J]. SCIENTIA IRANICA, 2018, 25 (05) : 2425 - 2439
  • [6] Bayesian estimation of the shrinkage parameter in ridge regression
    Firinguetti-Limone, Luis
    Pereira-Barahona, Manuel
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (12) : 3314 - 3327
  • [7] Phase gradient estimation using Bayesian neural network
    Zhang, Kang-yang
    Ni, Zi-hao
    Dong, Bo
    Bai, Yu-lei
    [J]. CHINESE OPTICS, 2024, 17 (04)
  • [8] Voice conversion using General Regression Neural Network
    Nirmal, Jagannath
    Zaveri, Mukesh
    Patnaik, Suprava
    Kachare, Pramod
    [J]. APPLIED SOFT COMPUTING, 2014, 24 : 1 - 12
  • [9] A GENERAL REGRESSION NEURAL NETWORK
    SPECHT, DF
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (06): : 568 - 576
  • [10] Gaze Estimation Using Neural Network And Logistic Regression
    Xia, Yifan
    Liang, Baosheng
    Li, Zhaotong
    Gao, Song
    [J]. Computer Journal, 2022, 65 (08): : 2034 - 2043