PV Panel Model Parameter Estimation by Using Neural Network

被引:2
|
作者
Lo, Wai Lun [1 ]
Chung, Henry Shu Hung [2 ]
Hsung, Richard Tai Chiu [1 ]
Fu, Hong [3 ]
Shen, Tak Wai [1 ]
机构
[1] Hong Kong Chu Hai Coll, Dept Comp Sci, 80 Castle Peak Rd, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[3] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China
关键词
model parameters estimation; neural network; photovoltaic panel; maximum power point; POWER POINT TRACKING; ELECTRICAL CHARACTERISTICS; PHOTOVOLTAIC ARRAYS; IMPLEMENTATION; SIMULATION; DESIGN; MODULE;
D O I
10.3390/s23073657
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Photovoltaic (PV) panels have been widely used as one of the solutions for green energy sources. Performance monitoring, fault diagnosis, and Control of Operation at Maximum Power Point (MPP) of PV panels became one of the popular research topics in the past. Model parameters could reflect the health conditions of a PV panel, and model parameter estimation can be applied to PV panel fault diagnosis. In this paper, we will propose a new algorithm for PV panel model parameters estimation by using a Neural Network (ANN) with a Numerical Current Prediction (NCP) layer. Output voltage and current signals (VI) after load perturbation are observed. An ANN is trained to estimate the PV panel model parameters, which is then fined tuned by the NCP to improve the accuracy to about 6%. During the testing stage, VI signals are input into the proposed ANN-NCP system. PV panel model parameters can then be estimated by the proposed algorithms, and the estimated model parameters can be then used for fault detection, health monitoring, and tracking operating points for MPP conditions.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [41] ESTIMATION MODEL OF TRANSFORMER IRON LOSS USING NEURAL NETWORK
    Lu, Tai-Ken
    Yeh, Chien-Ta
    Dirn, Min-Doon
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2010, 18 (01): : 47 - 55
  • [42] Neural network architectures for parameter estimation of dynamical systems
    Raol, JR
    Madhuranath, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (04): : 387 - 394
  • [43] An Efficient Approach for Parameter Estimation of PV Model Using DE and Fuzzy Based MPPT Controller
    Sheraz, Muhammad
    Abido, M. A.
    2014 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS), 2014,
  • [44] An Improvement of Parameter Estimation Accuracy of Structural Equation Modeling using Hybridization of Artificial Neural Network in the Entrepreneurship Structural Model
    Devianto D.
    Wulandari F.
    Yanuar F.
    Rahmi I.
    Yollanda M.
    Applied Mathematics and Nonlinear Sciences, 2023, 8 (02) : 2279 - 2302
  • [45] Parameter estimation for WMTI-Watson model of white matter using encoder-decoder recurrent neural network
    Diao, Yujian
    Jelescu, Ileana
    MAGNETIC RESONANCE IN MEDICINE, 2023, 89 (03) : 1193 - 1206
  • [46] Denoising based on noise parameter estimation in speckled OCT images using neural network
    Avanaki, Mohammad R. N.
    Laissue, P. Philippe
    Podoleanu, Adrian G.
    Hojjat, Ali
    1ST CANTERBURY WORKSHOP ON OPTICAL COHERENCE TOMOGRAPHY AND ADAPTIVE OPTICS, 2008, 7139
  • [47] Sequential Experiment Design for Parameter Estimation of Nonlinear Systems using a Neural Network Approximatort
    Ramakrishna, Raksha
    Shao, Yuqi
    Dan, Gyorgy
    Kringos, Nicole
    EUROPEAN JOURNAL OF CONTROL, 2023, 74
  • [48] Crop parameter estimation of Lady finger by using different neural network training algorithms
    Abhishek Pandey
    J. K. Srivastava
    N. S. Rajput
    R. Prasad
    Russian Agricultural Sciences, 2010, 36 (1) : 71 - 77
  • [49] Tumor model parameter estimation for therapy optimization using artificial neural networks
    Puskas, Melania
    Drexler, Daniel Andras
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 1254 - 1259
  • [50] Thermal Comfort Index Estimation and Parameter Selection Using Fuzzy Convolutional Neural Network
    Mitra, Anirban
    Sharma, Arjun
    Sharma, Sumit
    Roy, Sudip
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT I, 2018, 11139 : 714 - 724