Hermitian numerical manifold method for large deflection of irregular Foppl-von Karman plates

被引:9
|
作者
Guo, Hongwei [1 ,2 ]
Cao, Xitailang [1 ]
Liang, Zenglong [1 ]
Lin, Shan [1 ,4 ]
Zheng, Hong [1 ]
Cui, Hao [1 ,3 ]
机构
[1] Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] PowerChina Huadong Engn Corp Ltd, Hangzhou 311122, Zhejiang, Peoples R China
[4] Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
关键词
Numerical manifold method; Hermitian space; Physical cover; Large deflection; Foppl-von Karman model; CONTINUOUS NODAL STRESS; THIN-PLATE; NONLINEAR-ANALYSIS; MESHLESS METHOD; CRACK; SIMULATION;
D O I
10.1016/j.enganabound.2023.05.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We proposed the Hermitian manifold numerical method (HNMM) fitted for finite strain analysis of thin plates with irregular domains. The large deflection of elastic thin plates is generally characterized by Foppl-von Karman (FvK) equations, coupled with nonlinear fourth-order partial differential equations. The corresponding primal variational formulation requires the solution function to be globally C-1 continuous but piecewise C-2 continuous (namely H-2 regular). Hermitian numerical manifold method (HNMM) can easily construct an approximation to solutions that satisfy the H-2 regular requirements with structured meshes. Furthermore, those classical plate elements in finite element history can be embedded in the framework of HNMM and be more flexible and adaptable to solve plates with irregular domains. Thus, HNMM is formulated based on the Foppl-von Karman (FvK) model using the dual cover system and a triplet attributes group on the physical patches. The numerical results demonstrate the accuracy of HNMM in large deflection of Foppl-von Karman plate with complex domain shape.
引用
收藏
页码:25 / 38
页数:14
相关论文
共 50 条
  • [1] VARIATIONAL PROBLEMS FOR FOPPL-VON KARMAN PLATES
    Maddalena, Francesco
    Percivale, Danilo
    Tomarelli, Franco
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) : 251 - 282
  • [2] The Foppl-von Karman equations for plates with incompatible strains
    Lewicka, Marta
    Mahadevan, L.
    Pakzad, Mohammad Reza
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2126): : 402 - 426
  • [3] NUMERICAL SOLUTION OF A FOPPL-VON KARMAN MODEL
    Bartels, Soeren
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (03) : 1505 - 1524
  • [4] The Foppl-von Karman equations of elastic plates with initial stress
    Ciarletta, P.
    Pozzi, G.
    Riccobelli, D.
    ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (05):
  • [5] A biparametric perturbation method for the Foppl-von Karman equations of bimodular thin plates
    He, Xiao-Ting
    Cao, Liang
    Wang, Ying-Zhu
    Sun, Jun-Yi
    Zheng, Zhou-Lian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1688 - 1705
  • [6] Rigorous bounds for the Foppl-von Karman theory of isotropically compressed plates
    Ben Belgacem, H
    Conti, S
    DeSimone, A
    Müller, S
    JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (06) : 661 - 683
  • [7] Defects and metric anomalies in Foppl-von Karman surfaces
    Singh, Manish
    Roychowdhury, Ayan
    Gupta, Anurag
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2262):
  • [8] On the compatibility relation for the Foppl-von Karman plate equations
    Coman, Ciprian D.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2407 - 2410
  • [9] A mixed variational principle for the Foppl-von Karman equations
    Brunetti, Matteo
    Favata, Antonino
    Paolone, Achille
    Vidoli, Stefano
    APPLIED MATHEMATICAL MODELLING, 2020, 79 : 381 - 391
  • [10] An atomistic-based Foppl-von Karman model for graphene
    Davini, Cesare
    Favata, Antonino
    Paroni, Roberto
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 116 : 281 - 288