The Foppl-von Karman equations for plates with incompatible strains

被引:73
|
作者
Lewicka, Marta [2 ]
Mahadevan, L. [3 ]
Pakzad, Mohammad Reza [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
[3] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
non-Euclidean plates; nonlinear elasticity; gamma convergence; calculus of variations; ELASTICITY;
D O I
10.1098/rspa.2010.0138
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We provide a derivation of the Foppl-von Karman equations for the shape of and stresses in an elastic plate with incompatible or residual strains. These might arise from a range of causes: inhomogeneous growth, plastic deformation, swelling or shrinkage driven by solvent absorption. Our analysis gives rigorous bounds on the convergence of the three-dimensional equations of elasticity to the low-dimensional description embodied in the plate-like description of laminae and thus justifies a recent formulation of the problem to the shape of growing leaves. It also formalizes a procedure that can be used to derive other low-dimensional descriptions of active materials with complex non-Euclidean geometries.
引用
收藏
页码:402 / 426
页数:25
相关论文
共 50 条
  • [1] The Foppl-von Karman equations of elastic plates with initial stress
    Ciarletta, P.
    Pozzi, G.
    Riccobelli, D.
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (05):
  • [2] VARIATIONAL PROBLEMS FOR FOPPL-VON KARMAN PLATES
    Maddalena, Francesco
    Percivale, Danilo
    Tomarelli, Franco
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) : 251 - 282
  • [3] A biparametric perturbation method for the Foppl-von Karman equations of bimodular thin plates
    He, Xiao-Ting
    Cao, Liang
    Wang, Ying-Zhu
    Sun, Jun-Yi
    Zheng, Zhou-Lian
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1688 - 1705
  • [4] On the compatibility relation for the Foppl-von Karman plate equations
    Coman, Ciprian D.
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2407 - 2410
  • [5] A mixed variational principle for the Foppl-von Karman equations
    Brunetti, Matteo
    Favata, Antonino
    Paolone, Achille
    Vidoli, Stefano
    [J]. APPLIED MATHEMATICAL MODELLING, 2020, 79 : 381 - 391
  • [6] Some remarks on radial solutions of Foppl-von Karman equations
    El Doussouki, A.
    Guedda, M.
    Jazar, M.
    Benlahsen, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4340 - 4345
  • [7] Rigorous bounds for the Foppl-von Karman theory of isotropically compressed plates
    Ben Belgacem, H
    Conti, S
    DeSimone, A
    Müller, S
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (06) : 661 - 683
  • [8] NUMERICAL SOLUTION OF A FOPPL-VON KARMAN MODEL
    Bartels, Soeren
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (03) : 1505 - 1524
  • [9] Defects and metric anomalies in Foppl-von Karman surfaces
    Singh, Manish
    Roychowdhury, Ayan
    Gupta, Anurag
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2262):
  • [10] An atomistic-based Foppl-von Karman model for graphene
    Davini, Cesare
    Favata, Antonino
    Paroni, Roberto
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 116 : 281 - 288