NUMERICAL SOLUTION OF A FOPPL-VON KARMAN MODEL

被引:6
|
作者
Bartels, Soeren [1 ]
机构
[1] Albert Ludwigs Univ Freiburg, Abt Angew Math, D-79104 Freiburg, Germany
关键词
plate bending; finite elements; iterative solution; convergence; ENERGY; APPROXIMATION; SHEETS;
D O I
10.1137/16M1069791
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The formation of folds and ridges in the elastic deformation of thin elastic sheets is related to certain instabilities in mathematical models derived from continuum mechanics. Their approximation is difficult due to nonuniqueness and localization effects which result from nonlinearities and singular perturbations. Numerical methods for simulating these effects have to be justified without unrealistic assumptions on exact solutions. The paper proposes a convergent finite element discretization of a Foppl-von Karman model and devises an efficient energy decreasing iterative scheme.
引用
收藏
页码:1505 / 1524
页数:20
相关论文
共 50 条
  • [1] An atomistic-based Foppl-von Karman model for graphene
    Davini, Cesare
    Favata, Antonino
    Paroni, Roberto
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 116 : 281 - 288
  • [2] VARIATIONAL PROBLEMS FOR FOPPL-VON KARMAN PLATES
    Maddalena, Francesco
    Percivale, Danilo
    Tomarelli, Franco
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) : 251 - 282
  • [3] Periodically wrinkled plate model of the Foppl-von Karman type
    Velcic, Igor
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2013, 12 (02) : 275 - 307
  • [4] The Foppl-von Karman equations for plates with incompatible strains
    Lewicka, Marta
    Mahadevan, L.
    Pakzad, Mohammad Reza
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2126): : 402 - 426
  • [5] Defects and metric anomalies in Foppl-von Karman surfaces
    Singh, Manish
    Roychowdhury, Ayan
    Gupta, Anurag
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2262):
  • [6] On the compatibility relation for the Foppl-von Karman plate equations
    Coman, Ciprian D.
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2407 - 2410
  • [7] A mixed variational principle for the Foppl-von Karman equations
    Brunetti, Matteo
    Favata, Antonino
    Paolone, Achille
    Vidoli, Stefano
    [J]. APPLIED MATHEMATICAL MODELLING, 2020, 79 : 381 - 391
  • [8] The Foppl-von Karman equations of elastic plates with initial stress
    Ciarletta, P.
    Pozzi, G.
    Riccobelli, D.
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (05):
  • [9] Growth and Non-Metricity in Foppl-von Karman Shells
    Roychowdhury, Ayan
    Gupta, Anurag
    [J]. JOURNAL OF ELASTICITY, 2020, 140 (02) : 337 - 348
  • [10] Some remarks on radial solutions of Foppl-von Karman equations
    El Doussouki, A.
    Guedda, M.
    Jazar, M.
    Benlahsen, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4340 - 4345