A mixed variational principle for the Foppl-von Karman equations

被引:4
|
作者
Brunetti, Matteo [1 ]
Favata, Antonino [1 ]
Paolone, Achille [1 ]
Vidoli, Stefano [1 ]
机构
[1] Sapienza Univ Rome, Dept Struct & Geotech Engn, Via Eudossiana 18, I-00184 Rome, Italy
关键词
Foppl-von Karman equations; Variational principles; Weak formulation; VENANT COMPATIBILITY CONDITIONS; PLATE; MODEL;
D O I
10.1016/j.apm.2019.10.041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A mixed variational principle is proposed for deducing the Foppl-von Karman equations governing the large deflections of thin elastic plates or shallow shells. Proper boundary conditions are found for the case of applied in-plane tractions and displacements, and simple mechanical interpretations are achieved. Numerical implementation is carried out, along with examples and comparisons with the classical formulation in terms of displacements. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:381 / 391
页数:11
相关论文
共 50 条
  • [1] VARIATIONAL PROBLEMS FOR FOPPL-VON KARMAN PLATES
    Maddalena, Francesco
    Percivale, Danilo
    Tomarelli, Franco
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) : 251 - 282
  • [2] The Foppl-von Karman equations for plates with incompatible strains
    Lewicka, Marta
    Mahadevan, L.
    Pakzad, Mohammad Reza
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2126): : 402 - 426
  • [3] On the compatibility relation for the Foppl-von Karman plate equations
    Coman, Ciprian D.
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2407 - 2410
  • [4] The Foppl-von Karman equations of elastic plates with initial stress
    Ciarletta, P.
    Pozzi, G.
    Riccobelli, D.
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (05):
  • [5] Some remarks on radial solutions of Foppl-von Karman equations
    El Doussouki, A.
    Guedda, M.
    Jazar, M.
    Benlahsen, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4340 - 4345
  • [6] NUMERICAL SOLUTION OF A FOPPL-VON KARMAN MODEL
    Bartels, Soeren
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (03) : 1505 - 1524
  • [7] Defects and metric anomalies in Foppl-von Karman surfaces
    Singh, Manish
    Roychowdhury, Ayan
    Gupta, Anurag
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2262):
  • [8] A biparametric perturbation method for the Foppl-von Karman equations of bimodular thin plates
    He, Xiao-Ting
    Cao, Liang
    Wang, Ying-Zhu
    Sun, Jun-Yi
    Zheng, Zhou-Lian
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1688 - 1705
  • [9] An atomistic-based Foppl-von Karman model for graphene
    Davini, Cesare
    Favata, Antonino
    Paroni, Roberto
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 116 : 281 - 288
  • [10] Modeling Graphene-Polymer Heterostructure MEMS Membranes with the Foppl-von Karman Equations
    Smith, Katherine
    Retallick, Aidan
    Melendrez, Daniel
    Vijayaraghavan, Aravind
    Heil, Matthias
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (07) : 9853 - 9861