A biparametric perturbation method for the Foppl-von Karman equations of bimodular thin plates

被引:12
|
作者
He, Xiao-Ting [1 ,2 ]
Cao, Liang [1 ]
Wang, Ying-Zhu [1 ]
Sun, Jun-Yi [1 ,2 ]
Zheng, Zhou-Lian [1 ,2 ]
机构
[1] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
[2] Chongqing Univ, Minist Educ, Key Lab New Technol Construct Cities Mt Area, Chongqing 400030, Peoples R China
基金
中国国家自然科学基金;
关键词
Foppl-von Karman equations; Bimodulus; Biparametric perturbation method; Selection of parameters; Central deflection; Loads; DEFLECTION CIRCULAR PLATE; DIFFERENT MODULI; TENSION; COMPOSITES; BEHAVIOR;
D O I
10.1016/j.jmaa.2017.06.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, a biparametric perturbation method is proposed to solve the Foppl-von Karman equations of bimodular thin plates subjected to a single load. First, by using two small parameters, one describes the bimodular effect and another stands for the central deflection, we expanded the unknown deflection and stress in double power series with respect to the two parameters and obtained the approximate analytical solutions under various edge conditions. Due to the diversity of selection of parameters and its combination, by using the bimodular parameter and the load as two perturbation parameters, we elucidated further the application of this method. The use of two sets of parameter schemes both can obtain satisfactory perturbation solutions; the numerical simulations also verify this idea. The results indicate that in a biparametric perturbation method, the selection and its combination of parameters may reflect the combined effects introduced by nonlinear factors. The method proposed in this study may be used for solving other mathematical equations established in some application problems. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1688 / 1705
页数:18
相关论文
共 50 条
  • [1] The Foppl-von Karman equations for plates with incompatible strains
    Lewicka, Marta
    Mahadevan, L.
    Pakzad, Mohammad Reza
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2126): : 402 - 426
  • [2] The Foppl-von Karman equations of elastic plates with initial stress
    Ciarletta, P.
    Pozzi, G.
    Riccobelli, D.
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (05):
  • [3] Functionally Graded Thin Circular Plates with Different Moduli in Tension and Compression: Improved Foppl-von Karman Equations and Its Biparametric Perturbation Solution
    He, Xiao-Ting
    Pang, Bo
    Ai, Jie-Chuan
    Sun, Jun-Yi
    [J]. MATHEMATICS, 2022, 10 (19)
  • [4] VARIATIONAL PROBLEMS FOR FOPPL-VON KARMAN PLATES
    Maddalena, Francesco
    Percivale, Danilo
    Tomarelli, Franco
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) : 251 - 282
  • [5] On the compatibility relation for the Foppl-von Karman plate equations
    Coman, Ciprian D.
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2407 - 2410
  • [6] A mixed variational principle for the Foppl-von Karman equations
    Brunetti, Matteo
    Favata, Antonino
    Paolone, Achille
    Vidoli, Stefano
    [J]. APPLIED MATHEMATICAL MODELLING, 2020, 79 : 381 - 391
  • [7] Rigorous bounds for the Foppl-von Karman theory of isotropically compressed plates
    Ben Belgacem, H
    Conti, S
    DeSimone, A
    Müller, S
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (06) : 661 - 683
  • [8] Some remarks on radial solutions of Foppl-von Karman equations
    El Doussouki, A.
    Guedda, M.
    Jazar, M.
    Benlahsen, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4340 - 4345
  • [9] Analytical method for the construction of solutions to the Foppl-von Karman equations governing deflections of a thin flat plate
    Van Gorder, Robert A.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2012, 47 (03) : 1 - 6
  • [10] Nonlinear dynamics of locally pulse loaded square Foppl-von Karman thin plates
    Mehreganian, N.
    Fallah, A. S.
    Louca, L. A.
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2019, 163