Characterizations of Lie centralizers of triangular algebras

被引:7
|
作者
Liu, Lei [1 ]
Gao, Kaitian [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 14期
基金
中国国家自然科学基金;
关键词
Lie centralizer; centralizer; triangular algebra; nest algebra; DERIVATIONS; RINGS;
D O I
10.1080/03081087.2022.2104788
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an unital algebra over the complex field C. A linear map phi from A into itself is called a Lie centralizer at a given point G is an element of A if phi([S, T]) = [S, phi(T)] = [phi(S), T] for all S,T is an element of A with ST = G. The aim of this paper is to give a description of Lie centralizers at an arbitrary but fixed point on triangular algebras. These results are then applied to nest algebras and upper triangular matrix algebras.
引用
收藏
页码:2375 / 2391
页数:17
相关论文
共 50 条
  • [1] Centralizers of Lie Structure of Triangular Algebras
    Fadaee, B.
    Fosner, A.
    Ghahramani, H.
    RESULTS IN MATHEMATICS, 2022, 77 (06)
  • [2] Centralizers of Lie Structure of Triangular Algebras
    B. Fadaee
    A. Fošner
    H. Ghahramani
    Results in Mathematics, 2022, 77
  • [3] Characterizations of Lie centralizers of generalized matrix algebras
    Liu, Lei
    Gao, Kaitian
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (04) : 1656 - 1671
  • [4] LIE CENTRALIZERS ON TRIANGULAR RINGS AND NEST ALGEBRAS
    Fosner, Ajda
    Jing, Wu
    ADVANCES IN OPERATOR THEORY, 2019, 4 (02): : 342 - 350
  • [5] Characterizations of Lie derivations of triangular algebras
    Ji, Peisheng
    Qi, Weiqing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) : 1137 - 1146
  • [6] Characterizations of Lie Higher Derivations on Triangular Algebras
    Wenhui Lin
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 77 - 104
  • [7] Characterizations of Lie Higher Derivations on Triangular Algebras
    Lin, Wenhui
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (01): : 77 - 104
  • [8] CHARACTERIZATIONS OF LIE HIGHER AND LIE TRIPLE DERIVATIONS ON TRIANGULAR ALGEBRAS
    Li, Jiankui
    Shen, Qihua
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (02) : 419 - 433
  • [9] σ-Centralizers of Triangular Algebras
    M. Ashraf
    M. A. Ansari
    Ukrainian Mathematical Journal, 2023, 75 : 495 - 509
  • [10] Centralizers in Lie Algebras
    Somayeh Saffarnia
    Mohammad Reza R. Moghaddam
    Mohammad Amin Rostamyari
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 39 - 49