Characterizations of Lie centralizers of generalized matrix algebras

被引:1
|
作者
Liu, Lei [1 ,2 ]
Gao, Kaitian [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710126, Peoples R China
基金
中国国家自然科学基金;
关键词
Centralizer; generalized matrix algebra; Lie centralizer; DERIVATIONS; RINGS;
D O I
10.1080/00927872.2023.2269579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a generalized matrix algebra. A linear map phi:G -> G is said to be a left (right) Lie centralizer at E is an element of G if phi([S,T])=[phi(S),T] (phi([S,T])=[S,phi(T)]) holds for all S,T is an element of G with ST = E. phi is of a standard form if phi(A)=ZA+gamma(A) for all A is an element of G, where Z is in the center of G and gamma is a linear map from G into its center vanishing on each commutator [S,T] whenever ST = E. In this paper, we give a complete characterization of phi. It is shown that, under some suitable assumptions on G,phi has a standard form.
引用
收藏
页码:1656 / 1671
页数:16
相关论文
共 50 条
  • [1] Lie (Jordan) centralizers on generalized matrix algebras
    Jabeen, Aisha
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (01) : 278 - 291
  • [2] LIE TRIPLE CENTRALIZERS ON GENERALIZED MATRIX ALGEBRAS
    Fadaee, Behrooz
    Ghahramani, Hoger
    Jing, Wu
    QUAESTIONES MATHEMATICAE, 2023, 46 (02) : 281 - 300
  • [3] On nonlinear Lie centralizers of generalized matrix algebras
    Liu, Lei
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (14): : 2693 - 2705
  • [4] Lie centralizers at the zero products on generalized matrix algebras
    Fadaee, B.
    Ghahramani, H.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (08)
  • [5] Lie n-centralizers of generalized matrix algebras
    Yuan, He
    Liu, Zhuo
    AIMS MATHEMATICS, 2023, 8 (06): : 14609 - 14622
  • [6] Lie centralizers at unit product on generalized matrix algebras
    Liu, Lei
    Gao, Kaitian
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2025, 106 (1-2): : 1 - 28
  • [7] Characterizations of Lie centralizers of triangular algebras
    Liu, Lei
    Gao, Kaitian
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (14): : 2375 - 2391
  • [8] Lie centralizers and commutant preserving maps on generalized matrix algebras
    Ghahramani, Hoger
    Mokhtari, Amir Hossein
    Wei, Feng
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (05)
  • [9] Characterizations of Lie triple derivations on generalized matrix algebras
    Ashraf, Mohammad
    Akhtar, Mohd Shuaib
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (09) : 3651 - 3660
  • [10] a-CENTRALIZERS OF GENERALIZED MATRIX ALGEBRAS
    Ashraf, M. O. H. A. M. M. A. D.
    Ansari, Mohammad Afajal
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (02) : 579 - 595