Characterizations of Lie centralizers of generalized matrix algebras

被引:1
|
作者
Liu, Lei [1 ,2 ]
Gao, Kaitian [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710126, Peoples R China
基金
中国国家自然科学基金;
关键词
Centralizer; generalized matrix algebra; Lie centralizer; DERIVATIONS; RINGS;
D O I
10.1080/00927872.2023.2269579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a generalized matrix algebra. A linear map phi:G -> G is said to be a left (right) Lie centralizer at E is an element of G if phi([S,T])=[phi(S),T] (phi([S,T])=[S,phi(T)]) holds for all S,T is an element of G with ST = E. phi is of a standard form if phi(A)=ZA+gamma(A) for all A is an element of G, where Z is in the center of G and gamma is a linear map from G into its center vanishing on each commutator [S,T] whenever ST = E. In this paper, we give a complete characterization of phi. It is shown that, under some suitable assumptions on G,phi has a standard form.
引用
收藏
页码:1656 / 1671
页数:16
相关论文
共 50 条
  • [21] CHARACTERIZATIONS OF CENTRALIZERS AND DERIVATIONS ON SOME ALGEBRAS
    He, Jun
    Li, Jiankui
    Qian, Wenhua
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (02) : 685 - 696
  • [22] Generalized Lie triple derivations on generalized matrix algebras
    Akhtar, Mohd Shuaib
    Ashraf, Mohammad
    Ansari, Mohammad Afajal
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (05) : 2279 - 2289
  • [23] LIE-ALGEBRAS WITH NILPOTENT CENTRALIZERS
    BENKART, GM
    ISAACS, IM
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (05): : 929 - 941
  • [24] Centralizers of Lie Structure of Triangular Algebras
    Fadaee, B.
    Fosner, A.
    Ghahramani, H.
    RESULTS IN MATHEMATICS, 2022, 77 (06)
  • [25] Centralizers in partially commutative Lie algebras
    E. N. Poroshenko
    Algebra and Logic, 2012, 51 : 351 - 371
  • [26] Centralizers in partially commutative Lie algebras
    Poroshenko, E. N.
    ALGEBRA AND LOGIC, 2012, 51 (04) : 351 - 371
  • [27] LIE-ALGEBRAS WITH NILPOTENT CENTRALIZERS
    ISAACS, IM
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1980, 37 : 633 - 634
  • [28] Centralizers of Lie Structure of Triangular Algebras
    B. Fadaee
    A. Fošner
    H. Ghahramani
    Results in Mathematics, 2022, 77
  • [29] Lie algebras of an affinization of a generalized Cartan matrix
    Lum K.H.
    Archiv der Mathematik, 1998, 70 (6) : 438 - 446
  • [30] Local Lie derivations of generalized matrix algebras
    Liu, Dan
    Zhang, Jianhua
    Song, Mingliang
    AIMS MATHEMATICS, 2023, 8 (03): : 6900 - 6912