Centralizers of Lie Structure of Triangular Algebras

被引:0
|
作者
B. Fadaee
A. Fošner
H. Ghahramani
机构
[1] University of Kurdistan,Department of Mathematics
[2] University of Primorska,Faculty of Management
来源
Results in Mathematics | 2022年 / 77卷
关键词
Lie centralizer; lie derivation; generalized Lie 2-derivation; triangular algebra; 16W25; 47B47; 17B60; 15A78; 47L35;
D O I
暂无
中图分类号
学科分类号
摘要
Let T=Tri(A,M,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {T}} = Tri ({\mathcal {A}},{\mathcal {M}},{\mathcal {B}} ) $$\end{document} be a triangular algebra where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {A}} $$\end{document} is a unital algebra, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {B}} $$\end{document} is an algebra which is not necessarily unital, and M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {M}} $$\end{document} is a faithful (A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {A}} $$\end{document}, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {B}} $$\end{document})-bimodule which is unital as a left A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {A}} $$\end{document}-module. In this paper, under some mild conditions on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {T}}$$\end{document}, we show that if ϕ:T→T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi : {\mathcal {T}} \rightarrow {\mathcal {T}} $$\end{document} is a linear map satisfying A,B∈T,AB=P⟹ϕ([A,B])=[A,ϕ(B)]=[ϕ(A),B],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} A,B \in {\mathcal {T}}, ~~ AB= P \Longrightarrow \phi ( [A,B])=[A,\phi (B) ]=[\phi (A) , B], \end{aligned}$$\end{document}where P is the standard idempotent of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document}, then ϕ=ψ+γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi = \psi +\gamma $$\end{document} where ψ:T→T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \psi :{\mathcal {T}} \rightarrow {\mathcal {T}}$$\end{document} is a centralizer and γ:T→Z(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma :{\mathcal {T}}\rightarrow Z( {\mathcal {T}}) $$\end{document} is a linear map vanishing at commutators [A, B] with AB=P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ AB=P $$\end{document} whrere Z(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Z( {\mathcal {T}}) $$\end{document} is the center of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {T}}$$\end{document}. Applying our result, we characterize linear maps on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document} that behave like generalized Lie 2-derivations at idempotent products as an application of above result. Our results are applied to upper triangular matrix algebras and nest algebras.
引用
收藏
相关论文
共 50 条
  • [1] Centralizers of Lie Structure of Triangular Algebras
    Fadaee, B.
    Fosner, A.
    Ghahramani, H.
    RESULTS IN MATHEMATICS, 2022, 77 (06)
  • [2] Characterizations of Lie centralizers of triangular algebras
    Liu, Lei
    Gao, Kaitian
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (14): : 2375 - 2391
  • [3] LIE CENTRALIZERS ON TRIANGULAR RINGS AND NEST ALGEBRAS
    Fosner, Ajda
    Jing, Wu
    ADVANCES IN OPERATOR THEORY, 2019, 4 (02): : 342 - 350
  • [4] σ-Centralizers of Triangular Algebras
    M. Ashraf
    M. A. Ansari
    Ukrainian Mathematical Journal, 2023, 75 : 495 - 509
  • [5] Centralizers in Lie Algebras
    Somayeh Saffarnia
    Mohammad Reza R. Moghaddam
    Mohammad Amin Rostamyari
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 39 - 49
  • [6] σ-Centralizers of Triangular Algebras
    Ashraf, M.
    Ansari, M. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (04) : 495 - 509
  • [7] CENTRALIZERS IN LIE ALGEBRAS
    Saffarnia, Somayeh
    Moghaddam, Mohammad Reza R.
    Rostamyari, Mohammad Amin
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (01): : 39 - 49
  • [8] Lie algebras with Abelian centralizers
    Gorbatsevich, V. V.
    MATHEMATICAL NOTES, 2017, 101 (5-6) : 795 - 801
  • [9] ON JORDAN CENTRALIZERS OF TRIANGULAR ALGEBRAS
    Liu, Lei
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (02): : 223 - 234
  • [10] Lie Algebras with Abelian Centralizers
    Klep, Igor
    Moravec, Primoz
    ALGEBRA COLLOQUIUM, 2010, 17 (04) : 629 - 636