Centralizers of Lie Structure of Triangular Algebras

被引:0
|
作者
B. Fadaee
A. Fošner
H. Ghahramani
机构
[1] University of Kurdistan,Department of Mathematics
[2] University of Primorska,Faculty of Management
来源
Results in Mathematics | 2022年 / 77卷
关键词
Lie centralizer; lie derivation; generalized Lie 2-derivation; triangular algebra; 16W25; 47B47; 17B60; 15A78; 47L35;
D O I
暂无
中图分类号
学科分类号
摘要
Let T=Tri(A,M,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {T}} = Tri ({\mathcal {A}},{\mathcal {M}},{\mathcal {B}} ) $$\end{document} be a triangular algebra where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {A}} $$\end{document} is a unital algebra, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {B}} $$\end{document} is an algebra which is not necessarily unital, and M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {M}} $$\end{document} is a faithful (A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {A}} $$\end{document}, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {B}} $$\end{document})-bimodule which is unital as a left A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {A}} $$\end{document}-module. In this paper, under some mild conditions on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {T}}$$\end{document}, we show that if ϕ:T→T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi : {\mathcal {T}} \rightarrow {\mathcal {T}} $$\end{document} is a linear map satisfying A,B∈T,AB=P⟹ϕ([A,B])=[A,ϕ(B)]=[ϕ(A),B],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} A,B \in {\mathcal {T}}, ~~ AB= P \Longrightarrow \phi ( [A,B])=[A,\phi (B) ]=[\phi (A) , B], \end{aligned}$$\end{document}where P is the standard idempotent of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document}, then ϕ=ψ+γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi = \psi +\gamma $$\end{document} where ψ:T→T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \psi :{\mathcal {T}} \rightarrow {\mathcal {T}}$$\end{document} is a centralizer and γ:T→Z(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gamma :{\mathcal {T}}\rightarrow Z( {\mathcal {T}}) $$\end{document} is a linear map vanishing at commutators [A, B] with AB=P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ AB=P $$\end{document} whrere Z(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Z( {\mathcal {T}}) $$\end{document} is the center of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {T}}$$\end{document}. Applying our result, we characterize linear maps on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}$$\end{document} that behave like generalized Lie 2-derivations at idempotent products as an application of above result. Our results are applied to upper triangular matrix algebras and nest algebras.
引用
收藏
相关论文
共 50 条
  • [31] Lie centralizers at zero products on a class of operator algebras
    Hoger Ghahramani
    Wu Jing
    Annals of Functional Analysis, 2021, 12
  • [32] Lie centralizers at the zero products on generalized matrix algebras
    Fadaee, B.
    Ghahramani, H.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (08)
  • [33] Lie n-centralizers of generalized matrix algebras
    Yuan, He
    Liu, Zhuo
    AIMS MATHEMATICS, 2023, 8 (06): : 14609 - 14622
  • [34] Lie centralizers at unit product on generalized matrix algebras
    Liu, Lei
    Gao, Kaitian
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2025, 106 (1-2): : 1 - 28
  • [35] Lie centralizers at zero products on a class of operator algebras
    Ghahramani, Hoger
    Jing, Wu
    ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (02)
  • [36] Nonlinear skew Lie triple centralizers (derivations) on *-algebras
    Li, Changjing
    Li, Xiaoyi
    Wang, Jingxuan
    FILOMAT, 2024, 38 (18) : 6413 - 6421
  • [37] Solvable Lie algebras with triangular nilradicals
    Tremblay, S
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : 789 - 806
  • [38] Nonlinear Lie derivations of triangular algebras
    Yu, Weiyan
    Zhang, Jianhua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2953 - 2960
  • [39] Lie triple derivations of triangular algebras
    Xiao, Zhankui
    Wei, Feng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (05) : 1234 - 1249
  • [40] Complete triangular structures and Lie algebras
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (09) : 1839 - 1851