Characterizations of Lie centralizers of triangular algebras

被引:7
|
作者
Liu, Lei [1 ]
Gao, Kaitian [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 14期
基金
中国国家自然科学基金;
关键词
Lie centralizer; centralizer; triangular algebra; nest algebra; DERIVATIONS; RINGS;
D O I
10.1080/03081087.2022.2104788
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an unital algebra over the complex field C. A linear map phi from A into itself is called a Lie centralizer at a given point G is an element of A if phi([S, T]) = [S, phi(T)] = [phi(S), T] for all S,T is an element of A with ST = G. The aim of this paper is to give a description of Lie centralizers at an arbitrary but fixed point on triangular algebras. These results are then applied to nest algebras and upper triangular matrix algebras.
引用
收藏
页码:2375 / 2391
页数:17
相关论文
共 50 条
  • [21] Characterizations of Lie Triple Higher Derivations of Triangular Algebras by Local Actions
    Ashraf, Mohammad
    Akhtar, Mohd Shuaib
    Jabeen, Aisha
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (04): : 683 - 710
  • [22] LIE-ALGEBRAS WITH NILPOTENT CENTRALIZERS
    BENKART, GM
    ISAACS, IM
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (05): : 929 - 941
  • [23] Centralizers in partially commutative Lie algebras
    E. N. Poroshenko
    Algebra and Logic, 2012, 51 : 351 - 371
  • [24] Centralizers in partially commutative Lie algebras
    Poroshenko, E. N.
    ALGEBRA AND LOGIC, 2012, 51 (04) : 351 - 371
  • [25] Characterizations of Lie-type derivations of triangular algebras with local actions
    Akhtar, Mohd Shuaib
    Ashraf, Mohammad
    Ansari, Mohammad Afajal
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 559 - 574
  • [26] Characterizations of Lie-type derivations of triangular algebras with local actions
    Mohd Shuaib Akhtar
    Mohammad Ashraf
    Mohammad Afajal Ansari
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 559 - 574
  • [27] LIE-ALGEBRAS WITH NILPOTENT CENTRALIZERS
    ISAACS, IM
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1980, 37 : 633 - 634
  • [28] Characterizations of generalized Lie n-higher derivations on certain triangular algebras
    Yuan, He
    Zhang, Qian
    Gu, Zhendi
    AIMS MATHEMATICS, 2024, 9 (11): : 29916 - 29941
  • [29] THE INDEX OF CENTRALIZERS OF ELEMENTS OF REDUCTIVE LIE ALGEBRAS
    Charbonnel, Jean-Yves
    Moreau, Anne
    DOCUMENTA MATHEMATICA, 2010, 15 : 387 - 421
  • [30] The Characterization of Generalized Jordan Centralizers on Triangular Algebras
    Chen, Quanyuan
    Fang, Xiaochun
    Li, Changjing
    JOURNAL OF FUNCTION SPACES, 2018, 2018