Characterizations of Lie centralizers of triangular algebras

被引:7
|
作者
Liu, Lei [1 ]
Gao, Kaitian [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 14期
基金
中国国家自然科学基金;
关键词
Lie centralizer; centralizer; triangular algebra; nest algebra; DERIVATIONS; RINGS;
D O I
10.1080/03081087.2022.2104788
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an unital algebra over the complex field C. A linear map phi from A into itself is called a Lie centralizer at a given point G is an element of A if phi([S, T]) = [S, phi(T)] = [phi(S), T] for all S,T is an element of A with ST = G. The aim of this paper is to give a description of Lie centralizers at an arbitrary but fixed point on triangular algebras. These results are then applied to nest algebras and upper triangular matrix algebras.
引用
收藏
页码:2375 / 2391
页数:17
相关论文
共 50 条
  • [41] Invariants of triangular Lie algebras
    Boyko, Vyacheslav
    Patera, Jiri
    Popovych, Roman
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (27) : 7557 - 7572
  • [42] Lie centralizers at zero products on a class of operator algebras
    Hoger Ghahramani
    Wu Jing
    Annals of Functional Analysis, 2021, 12
  • [43] Lie n-centralizers of generalized matrix algebras
    Yuan, He
    Liu, Zhuo
    AIMS MATHEMATICS, 2023, 8 (06): : 14609 - 14622
  • [44] Lie centralizers at unit product on generalized matrix algebras
    Liu, Lei
    Gao, Kaitian
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2025, 106 (1-2): : 1 - 28
  • [45] Lie centralizers at the zero products on generalized matrix algebras
    Fadaee, B.
    Ghahramani, H.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (08)
  • [46] Lie centralizers at zero products on a class of operator algebras
    Ghahramani, Hoger
    Jing, Wu
    ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (02)
  • [47] Nonlinear skew Lie triple centralizers (derivations) on *-algebras
    Li, Changjing
    Li, Xiaoyi
    Wang, Jingxuan
    FILOMAT, 2024, 38 (18) : 6413 - 6421
  • [48] Characterizations of Lie derivations of Nest Algebras
    Yang, Xiaoling
    2010 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING (MSE 2010), VOL 2, 2010, : 181 - 184
  • [49] SOME CHARACTERIZATIONS OF NILPOTENT LIE ALGEBRAS
    CHAO, CY
    MATHEMATISCHE ZEITSCHRIFT, 1968, 103 (01) : 40 - &
  • [50] Solvable Lie algebras with triangular nilradicals
    Tremblay, S
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : 789 - 806