Estimating quantum mutual information through a quantum neural network

被引:4
|
作者
Shin, Myeongjin [1 ]
Lee, Junseo [2 ,3 ]
Jeong, Kabgyun [4 ,5 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Sch Comp, Daejeon 34141, South Korea
[2] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
[3] Norma Inc, Quantum Secur R&D, Seoul 04799, South Korea
[4] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[5] Korea Inst Adv Study, Sch Computat Sci, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
Quantum mutual information; Donsker-Varadhan representation; Quantum neural network; Parameterized quantum circuits;
D O I
10.1007/s11128-023-04253-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a method of quantum machine learning called quantum mutual information neural estimation (QMINE) for estimating von Neumann entropy and quantum mutual information, which are fundamental properties in quantum information theory. The QMINE proposed here basically utilizes a technique of quantum neural networks (QNNs), to minimize a loss function that determines the von Neumann entropy, and thus quantum mutual information, which is believed more powerful to process quantum datasets than conventional neural networks due to quantum superposition and entanglement. To create a precise loss function, we propose a quantum Donsker-Varadhan representation (QDVR), which is a quantum analog of the classical Donsker-Varadhan representation. By exploiting a parameter shift rule on parameterized quantum circuits, we can efficiently implement and optimize the QNN and estimate the quantum entropies using the QMINE technique. Furthermore, numerical observations support our predictions of QDVR and demonstrate the good performance of QMINE.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Study on estimating quantum discord by neural network with prior knowledge
    Liu, Yong-Lei
    Wang, An-Min
    Sun, Yi
    Zhang, Peng-Fei
    Wang, Guo-Dong
    QUANTUM INFORMATION PROCESSING, 2019, 18 (11)
  • [12] Study on estimating quantum discord by neural network with prior knowledge
    Yong-Lei Liu
    An-Min Wang
    Yi Sun
    Peng-Fei Zhang
    Guo-Dong Wang
    Quantum Information Processing, 2019, 18
  • [13] A study of mutual information in quantum information systems
    Bao, GG
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 2495 - 2498
  • [14] Quantum scrambling and the growth of mutual information
    Touil, Akram
    Deffner, Sebastian
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (03)
  • [15] Quantum corrections to holographic mutual information
    Agon, Cesar A.
    Faulkner, Thomas
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08):
  • [16] Quantum Hypothesis Testing Mutual Information
    Zhang S.
    Xi Z.
    Xi, Zhengjun (xizhengjun@snnu.edu.cn), 1906, Science Press (58): : 1906 - 1914
  • [17] Entanglement, quantum entropy and mutual information
    Belavkin, VP
    Ohya, M
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2017): : 209 - 231
  • [18] Quantum corrections to holographic mutual information
    Cesar A. Agón
    Thomas Faulkner
    Journal of High Energy Physics, 2016
  • [19] Variational quantum algorithm for estimating the quantum Fisher information
    Beckey, Jacob L.
    Cerezo, M.
    Sone, Akira
    Coles, Patrick J.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [20] Calculating a maximizer for quantum mutual information
    Dorlas, T. C.
    Morgan, C.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 : 745 - 750