Estimating quantum mutual information through a quantum neural network

被引:4
|
作者
Shin, Myeongjin [1 ]
Lee, Junseo [2 ,3 ]
Jeong, Kabgyun [4 ,5 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Sch Comp, Daejeon 34141, South Korea
[2] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
[3] Norma Inc, Quantum Secur R&D, Seoul 04799, South Korea
[4] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[5] Korea Inst Adv Study, Sch Computat Sci, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
Quantum mutual information; Donsker-Varadhan representation; Quantum neural network; Parameterized quantum circuits;
D O I
10.1007/s11128-023-04253-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a method of quantum machine learning called quantum mutual information neural estimation (QMINE) for estimating von Neumann entropy and quantum mutual information, which are fundamental properties in quantum information theory. The QMINE proposed here basically utilizes a technique of quantum neural networks (QNNs), to minimize a loss function that determines the von Neumann entropy, and thus quantum mutual information, which is believed more powerful to process quantum datasets than conventional neural networks due to quantum superposition and entanglement. To create a precise loss function, we propose a quantum Donsker-Varadhan representation (QDVR), which is a quantum analog of the classical Donsker-Varadhan representation. By exploiting a parameter shift rule on parameterized quantum circuits, we can efficiently implement and optimize the QNN and estimate the quantum entropies using the QMINE technique. Furthermore, numerical observations support our predictions of QDVR and demonstrate the good performance of QMINE.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Quantum Mutual Information, Fragile Systems and Emergence
    Navarrete, Yasmin
    Davis, Sergio
    ENTROPY, 2022, 24 (11)
  • [42] A lower bound of quantum conditional mutual information
    Zhang, Lin
    Wu, Junde
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (41)
  • [43] UNCERTAINTY, ENTROPY, AND MUTUAL INFORMATION FOR QUANTUM STATES
    RAI, S
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1992, 9 (04) : 590 - 594
  • [44] Quantum Information in Neural Systems
    Georgiev, Danko D.
    SYMMETRY-BASEL, 2021, 13 (05):
  • [45] Estimating Electroencephalograph Network Parameters Using Mutual Information
    Thuraisingham, Ranjit Arulnayagam
    BRAIN CONNECTIVITY, 2018, 8 (05) : 311 - 317
  • [46] Entanglement in a quantum neural network based on quantum dots
    Altaisky, M. V.
    Zolnikova, N. N.
    Kaputkina, N. E.
    Krylov, V. A.
    Lozovik, Yu E.
    Dattani, N. S.
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2017, 24 : 24 - 28
  • [47] Quantum Neural Network with Improved Quantum Learning Algorithm
    Bu-Qing Chen
    Xu-Feng Niu
    International Journal of Theoretical Physics, 2020, 59 : 1978 - 1991
  • [48] Quantum adiabatic evolution algorithm for a quantum neural network
    Kinjo, M
    Sato, S
    Nakajima, K
    ARTIFICIAL NEURAL NETWORKS AND NEURAL INFORMATION PROCESSING - ICAN/ICONIP 2003, 2003, 2714 : 951 - 958
  • [49] Design of a quantum convolutional neural network on quantum circuits
    Zheng, Jin
    Gao, Qing
    Lu, Jinhu
    Ogorzalek, Maciej
    Pan, Yu
    Lu, Yanxuan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (17): : 13761 - 13777
  • [50] Quantum neural network: Prospects for quantum machine learning
    Matsui N.
    Journal of Japan Institute of Electronics Packaging, 2020, 23 (02) : 139 - 144