Estimating quantum mutual information through a quantum neural network
被引:4
|
作者:
Shin, Myeongjin
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol KAIST, Sch Comp, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol KAIST, Sch Comp, Daejeon 34141, South Korea
Shin, Myeongjin
[1
]
Lee, Junseo
论文数: 0引用数: 0
h-index: 0
机构:
Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
Norma Inc, Quantum Secur R&D, Seoul 04799, South KoreaKorea Adv Inst Sci & Technol KAIST, Sch Comp, Daejeon 34141, South Korea
Lee, Junseo
[2
,3
]
Jeong, Kabgyun
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
Korea Inst Adv Study, Sch Computat Sci, Seoul 02455, South KoreaKorea Adv Inst Sci & Technol KAIST, Sch Comp, Daejeon 34141, South Korea
Jeong, Kabgyun
[4
,5
]
机构:
[1] Korea Adv Inst Sci & Technol KAIST, Sch Comp, Daejeon 34141, South Korea
[2] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
[3] Norma Inc, Quantum Secur R&D, Seoul 04799, South Korea
[4] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[5] Korea Inst Adv Study, Sch Computat Sci, Seoul 02455, South Korea
We propose a method of quantum machine learning called quantum mutual information neural estimation (QMINE) for estimating von Neumann entropy and quantum mutual information, which are fundamental properties in quantum information theory. The QMINE proposed here basically utilizes a technique of quantum neural networks (QNNs), to minimize a loss function that determines the von Neumann entropy, and thus quantum mutual information, which is believed more powerful to process quantum datasets than conventional neural networks due to quantum superposition and entanglement. To create a precise loss function, we propose a quantum Donsker-Varadhan representation (QDVR), which is a quantum analog of the classical Donsker-Varadhan representation. By exploiting a parameter shift rule on parameterized quantum circuits, we can efficiently implement and optimize the QNN and estimate the quantum entropies using the QMINE technique. Furthermore, numerical observations support our predictions of QDVR and demonstrate the good performance of QMINE.
机构:
Harish Chandra Res Inst, Chhatnag Rd, Allahabad 211019, Uttar Pradesh, India
Inst Math Sci, CIT Campus, Madras 600113, Tamil Nadu, India
Homi Bhabha Natl Inst, Bombay 400094, Maharashtra, IndiaHarish Chandra Res Inst, Chhatnag Rd, Allahabad 211019, Uttar Pradesh, India