Estimating quantum mutual information through a quantum neural network

被引:4
|
作者
Shin, Myeongjin [1 ]
Lee, Junseo [2 ,3 ]
Jeong, Kabgyun [4 ,5 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Sch Comp, Daejeon 34141, South Korea
[2] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
[3] Norma Inc, Quantum Secur R&D, Seoul 04799, South Korea
[4] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[5] Korea Inst Adv Study, Sch Computat Sci, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
Quantum mutual information; Donsker-Varadhan representation; Quantum neural network; Parameterized quantum circuits;
D O I
10.1007/s11128-023-04253-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a method of quantum machine learning called quantum mutual information neural estimation (QMINE) for estimating von Neumann entropy and quantum mutual information, which are fundamental properties in quantum information theory. The QMINE proposed here basically utilizes a technique of quantum neural networks (QNNs), to minimize a loss function that determines the von Neumann entropy, and thus quantum mutual information, which is believed more powerful to process quantum datasets than conventional neural networks due to quantum superposition and entanglement. To create a precise loss function, we propose a quantum Donsker-Varadhan representation (QDVR), which is a quantum analog of the classical Donsker-Varadhan representation. By exploiting a parameter shift rule on parameterized quantum circuits, we can efficiently implement and optimize the QNN and estimate the quantum entropies using the QMINE technique. Furthermore, numerical observations support our predictions of QDVR and demonstrate the good performance of QMINE.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Bell Length as Mutual Information in Quantum Interference
    Licata, Ignazio
    Fiscaletti, Davide
    AXIOMS, 2014, 3 (02): : 153 - 165
  • [32] Mutual information as an order parameter for quantum synchronization
    Ameri, V.
    Eghbali-Arani, M.
    Mari, A.
    Farace, A.
    Kheirandish, F.
    Giovannetti, V.
    Fazio, R.
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [33] Natural Orbitals and Sparsity of Quantum Mutual Information
    Ratini, Leonardo
    Capecci, Chiara
    Guidoni, Leonardo
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (09) : 3535 - 3542
  • [34] Quantum mutual information along unitary orbits
    Jevtic, Sania
    Jennings, David
    Rudolph, Terry
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [35] Complete monogamy of multipartite quantum mutual information
    Guo, Yu
    Huang, Lizhong
    PHYSICAL REVIEW A, 2023, 107 (04)
  • [36] Multiparty quantum mutual information: An alternative definition
    Kumar, Asutosh
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [37] Generalized mutual information of quantum critical chains
    Alcaraz, F. C.
    Rajabpour, M. A.
    PHYSICAL REVIEW B, 2015, 91 (15)
  • [38] Renyi Mutual Information in Quantum Field Theory
    Kudler-Flam, Jonah
    PHYSICAL REVIEW LETTERS, 2023, 130 (02)
  • [39] Renyi generalizations of the conditional quantum mutual information
    Berta, Mario
    Seshadreesan, Kaushik P.
    Wilde, Mark M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (02)
  • [40] Mutual information in coupled double quantum dots
    Tanabe, Katsuaki
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (09):