Variational quantum algorithm for estimating the quantum Fisher information

被引:30
|
作者
Beckey, Jacob L. [1 ,2 ,3 ,4 ]
Cerezo, M. [1 ,5 ,6 ]
Sone, Akira [1 ,5 ,6 ,7 ]
Coles, Patrick J. [1 ,6 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87544 USA
[2] NIST, JILA, Boulder, CO 80309 USA
[3] Univ Colorado, Boulder, CO 80309 USA
[4] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[5] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA
[6] Quantum Sci Ctr, Oak Ridge, TN 37931 USA
[7] Aliro Technol Inc, Boston, MA 02135 USA
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 01期
基金
美国国家科学基金会;
关键词
SENSITIVITY;
D O I
10.1103/PhysRevResearch.4.013083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum Fisher information (QFI) quantifies the ultimate precision of estimating a parameter from a quantum state and can be regarded as a reliability measure of a quantum system as a quantum sensor. However, estimation of the QFI for a mixed state is in general a computationally demanding task. In this paper we present a variational quantum algorithm called variational quantum Fisher information estimation (VQFIE) to address this task. By estimating lower and upper bounds on the QFI, based on bounding the fidelity, VQFIE outputs a range in which the actual QFI lies. This result can then be used to variationally prepare the state that maximizes the QFI, for the application of quantum sensing. In contrast to previous approaches, VQFIE does not require knowledge of the explicit form of the sensor dynamics. We simulate the algorithm for a magnetometry setup and demonstrate the tightening of our bounds as the state purity increases. For this example, we compare our bounds with literature bounds and show that our bounds are tighter.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Variational quantum algorithm with information sharing
    Self, Chris N.
    Khosla, Kiran E.
    Smith, Alistair W. R.
    Sauvage, Frederic
    Haynes, Peter D.
    Knolle, Johannes
    Mintert, Florian
    Kim, M. S.
    [J]. NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [2] Variational quantum algorithm with information sharing
    Chris N. Self
    Kiran E. Khosla
    Alistair W. R. Smith
    Frédéric Sauvage
    Peter D. Haynes
    Johannes Knolle
    Florian Mintert
    M. S. Kim
    [J]. npj Quantum Information, 7
  • [3] Quantum Fisher information width in quantum metrology
    Bo Liu
    GuoLong Li
    YanMing Che
    Jie Chen
    XiaoGuang Wang
    [J]. Science China Physics, Mechanics & Astronomy, 2019, 62
  • [4] Development on quantum metrology with quantum Fisher information
    Ren Zhi-Hong
    Li Yan
    Li Yan-Na
    Li Wei-Dong
    [J]. ACTA PHYSICA SINICA, 2019, 68 (04)
  • [5] Quantum Fisher information width in quantum metrology
    Liu, Bo
    Li, GuoLong
    Che, YanMing
    Chen, Jie
    Wang, XiaoGuang
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (04)
  • [6] Quantifying quantum coherence with quantum Fisher information
    Feng, X. N.
    Wei, L. F.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [7] Quantifying quantum coherence with quantum Fisher information
    X. N. Feng
    L. F. Wei
    [J]. Scientific Reports, 7
  • [8] Quantum Fisher information power of quantum evolutions
    Zhao, Jun-Long
    Zhou, Yan-Hui
    Chen, Dong-Xu
    Su, Qi-Ping
    Zong, Xiao-Lan
    Wu, Qi-Cheng
    Yang, Ming
    Yang, Chui-Ping
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (27)
  • [9] Quantum Fisher information width in quantum metrology
    Bo Liu
    GuoLong Li
    YanMing Che
    Jie Chen
    XiaoGuang Wang
    [J]. Science China(Physics,Mechanics & Astronomy), 2019, Mechanics & Astronomy)2019 (04) : 33 - 41
  • [10] Variational quantum algorithms to estimate rank, quantum entropies, fidelity, and Fisher information via purity minimization
    Tan, Kok Chuan
    Volkoff, Tyler
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (03):