Lipschitz-free spaces and approximating sequences of projections

被引:2
|
作者
Godefroy, Gilles [1 ]
机构
[1] Inst Math Jussieu Paris Rive Gauche, Paris, France
关键词
Lipschitz-free spaces; Absolute extendability; Finite-dimensional decompositions; Bounded approximation properties; FREE BANACH-SPACES; DESCRIPTIVE COMPLEXITY; EXTENSIONS; DECOMPOSITIONS; PROPERTY; SUBSETS; FAMILY; BASES;
D O I
10.1007/s43037-024-00332-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lipschitz-free space F(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}(M)$$\end{document} has an F.D.D. when M is a separable L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_1$$\end{document}-Banach space, or when M subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\subset {\mathbb {R}}<^>n$$\end{document} is a somewhat regular subset. The interplay between the existence of extension operators for Lipschitz maps and the (pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\pi )$$\end{document}-property in Lipschitz-free spaces is investigated. If M is an arbitrary metric space, then F(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}(M)$$\end{document} has the (pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\pi )$$\end{document}-property up to a universal logarithmic factor. It follows in particular that the (pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\pi )$$\end{document}-property up to a logarithmic factor fails to imply the approximation property. A list of commented open problems is provided.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Supports and extreme points in Lipschitz-free spaces
    Aliaga, Ramon J.
    Pernecka, Eva
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (07) : 2073 - 2089
  • [22] Weakly almost square Lipschitz-free spaces
    Kaasik, Jaan Kristjan
    Veeorg, Triinu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [23] Convex integrals of molecules in Lipschitz-free spaces
    Aliaga, Ramon J.
    Pernecka, Eva
    Smith, Richard J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (08)
  • [24] Daugavet points and Δ-points in Lipschitz-free spaces
    Jung, Mingu
    Rueda Zoca, Abraham
    STUDIA MATHEMATICA, 2022, 265 (01) : 37 - 56
  • [25] Some remarks on the structure of Lipschitz-free spaces
    Hajek, Petr
    Novotny, Matej
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (02) : 283 - 304
  • [26] On the strongly subdifferentiable points in Lipschitz-free spaces
    Cobollo, Christian
    Dantas, Sheldon
    Hajek, Petr
    Jung, Mingu
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2025, 19 (01)
  • [27] On the preserved extremal structure of Lipschitz-free spaces
    Aliaga, Ramon J.
    Guirao, Antonio J.
    STUDIA MATHEMATICA, 2019, 245 (01) : 1 - 14
  • [28] Points of differentiability of the norm in Lipschitz-free spaces
    Aliaga, Ramon J.
    Rueda Zoca, Abraham
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (02)
  • [29] Lipschitz-free spaces, ultraproducts, and finite representability of metric spaces
    Garcia-Lirola, Luis C.
    Grelier, Guillaume
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (02)
  • [30] WEAK COMPACTNESS IN LIPSCHITZ-FREE SPACES OVER SUPERREFLEXIVE SPACES
    Silber, Zdenek
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (04) : 1723 - 1734