On the preserved extremal structure of Lipschitz-free spaces

被引:20
|
作者
Aliaga, Ramon J. [1 ,2 ]
Guirao, Antonio J. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, E-46022 Valencia, Spain
[2] Inst Fis Corpuscular CSIC UV, C Catedrat Jose Beltran 2, Paterna 46980, Spain
关键词
concave space; extremal structure; Lipschitz-free space; Lipschitz function; metric alignment; preserved extreme point; METRIC-SPACES;
D O I
10.4064/sm170529-30-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize preserved extreme points of the unit ball of Lipschitz-free spaces F (X) in terms of simple geometric conditions on the underlying metric space (X, d). Namely, the preserved extreme points are the elementary molecules corresponding to pairs of points p, q in X such that the triangle inequality d (p, q) <= d (p, r) + d (q, r) is uniformly strict for r away from p, q. For compact X, this condition reduces to the triangle inequality being strict. As a consequence, we give an affirmative answer to a conjecture of N. Weaver that compact spaces are concave if and only if they have no triple of metrically aligned points, and we show that all extreme points are preserved for several classes of compact metric spaces X, including Holder and countable compacta.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Supports in Lipschitz-free spaces and applications to extremal structure
    Aliaga, Ramon J.
    Pernecka, Eva
    Petitjean, Colin
    Prochazka, Antonin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (01)
  • [2] ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES
    Cuth, Marek
    Doucha, Michal
    Wojtaszczyk, Przemyslaw
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 3833 - 3846
  • [3] Some remarks on the structure of Lipschitz-free spaces
    Hajek, Petr
    Novotny, Matej
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (02) : 283 - 304
  • [4] Lipschitz-free Banach spaces
    Godefroy, G
    Kalton, NJ
    [J]. STUDIA MATHEMATICA, 2003, 159 (01) : 121 - 141
  • [5] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Braga, Bruno M.
    Chavez-Dominguez, Javier Alejandro
    Sinclair, Thomas
    [J]. MATHEMATISCHE ANNALEN, 2024, 388 (01) : 1053 - 1090
  • [6] Octahedrality in Lipschitz-free Banach spaces
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (03) : 447 - 460
  • [7] Lipschitz-Free Spaces Over Ultrametric Spaces
    Cuth, Marek
    Doucha, Michal
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1893 - 1906
  • [8] Lipschitz-free spaces and Schur properties
    Petitjean, C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (02) : 894 - 907
  • [9] On Schauder bases in Lipschitz-free spaces
    Hajek, Petr
    Pernecka, Eva
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 629 - 646
  • [10] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Bruno M. Braga
    Javier Alejandro Chávez-Domínguez
    Thomas Sinclair
    [J]. Mathematische Annalen, 2024, 388 : 1053 - 1090