Lipschitz geometry of operator spaces and Lipschitz-free operator spaces

被引:0
|
作者
Bruno M. Braga
Javier Alejandro Chávez-Domínguez
Thomas Sinclair
机构
[1] IMPA,Department of Mathematics
[2] University of Oklahoma,Mathematics Department
[3] Purdue University,undefined
来源
Mathematische Annalen | 2024年 / 388卷
关键词
Primary 47L25, 46L07 Secondary 46B80;
D O I
暂无
中图分类号
学科分类号
摘要
We show that there is an operator space notion of Lipschitz embeddability between operator spaces which is strictly weaker than its linear counterpart but which is still strong enough to impose linear restrictions on operator space structures. This shows that there is a nontrivial theory of nonlinear geometry for operator spaces and it answers a question in Braga et al. (Proc Am Math Soc 149(3):1139–1149, 2021). For that, we introduce the operator space version of Lipschitz-free Banach spaces and prove several properties of it. In particular, we show that separable operator spaces satisfy a sort of isometric Lipschitz-lifting property in the sense of Godefroy and Kalton. Gateaux differentiability of Lipschitz maps in the operator space category is also studied.
引用
收藏
页码:1053 / 1090
页数:37
相关论文
共 50 条
  • [1] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Braga, Bruno M.
    Chavez-Dominguez, Javier Alejandro
    Sinclair, Thomas
    [J]. MATHEMATISCHE ANNALEN, 2024, 388 (01) : 1053 - 1090
  • [2] Lipschitz-free Banach spaces
    Godefroy, G
    Kalton, NJ
    [J]. STUDIA MATHEMATICA, 2003, 159 (01) : 121 - 141
  • [3] ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES
    Cuth, Marek
    Doucha, Michal
    Wojtaszczyk, Przemyslaw
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 3833 - 3846
  • [4] Lipschitz-Free Spaces Over Ultrametric Spaces
    Cuth, Marek
    Doucha, Michal
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1893 - 1906
  • [5] Lipschitz Algebras and Lipschitz-Free Spaces Over Unbounded Metric Spaces
    Albiac, Fernando
    Ansorena, Jose L.
    Cuth, Marek
    Doucha, Michal
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (20) : 16327 - 16362
  • [6] Lipschitz-free Spaces on Finite Metric Spaces
    Dilworth, Stephen J.
    Kutzarova, Denka
    Ostrovskii, Mikhail, I
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2020, 72 (03): : 774 - 804
  • [7] Lipschitz-Free Spaces Over Ultrametric Spaces
    Marek Cúth
    Michal Doucha
    [J]. Mediterranean Journal of Mathematics, 2016, 13 : 1893 - 1906
  • [8] Octahedrality in Lipschitz-free Banach spaces
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (03) : 447 - 460
  • [9] Lipschitz-free spaces and Schur properties
    Petitjean, C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (02) : 894 - 907
  • [10] On Schauder bases in Lipschitz-free spaces
    Hajek, Petr
    Pernecka, Eva
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 629 - 646