ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES

被引:43
|
作者
Cuth, Marek [1 ,2 ]
Doucha, Michal [3 ]
Wojtaszczyk, Przemyslaw [4 ]
机构
[1] Polskiej Akad Nauk, Inst Matemat, Sniadeckich 8, PL-00656 Warsaw, Poland
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
[3] Polskiej Akad Nauk, Inst Matemat, Sniadeckich 8, PL-00656 Warsaw, Poland
[4] Univ Warsaw, Interdisciplinary Ctr Math & Computat Modelling, Ul Prosta 69, PL-02838 Warsaw, Poland
关键词
Lipschitz-free space; isomorphically universal separable Banach space; embedding of c(0);
D O I
10.1090/proc/13019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we study the structure of Lipschitz-free Banach spaces. We show that every Lipschitz-free Banach space over an infinite metric space contains a complemented copy of l(1). This result has many consequences for the structure of Lipschitz-free Banach spaces. Moreover, we give an example of a countable compact metric space K such that F(K) is not isomorphic to a subspace of L-1 and we show that whenever M is a subset of R-n, then F(M) is weakly sequentially complete; in particular, c(0) does not embed into F(M).
引用
收藏
页码:3833 / 3846
页数:14
相关论文
共 50 条
  • [1] On the preserved extremal structure of Lipschitz-free spaces
    Aliaga, Ramon J.
    Guirao, Antonio J.
    [J]. STUDIA MATHEMATICA, 2019, 245 (01) : 1 - 14
  • [2] Some remarks on the structure of Lipschitz-free spaces
    Hajek, Petr
    Novotny, Matej
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (02) : 283 - 304
  • [3] Lipschitz-free Banach spaces
    Godefroy, G
    Kalton, NJ
    [J]. STUDIA MATHEMATICA, 2003, 159 (01) : 121 - 141
  • [4] Supports in Lipschitz-free spaces and applications to extremal structure
    Aliaga, Ramon J.
    Pernecka, Eva
    Petitjean, Colin
    Prochazka, Antonin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (01)
  • [5] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Braga, Bruno M.
    Chavez-Dominguez, Javier Alejandro
    Sinclair, Thomas
    [J]. MATHEMATISCHE ANNALEN, 2024, 388 (01) : 1053 - 1090
  • [6] Octahedrality in Lipschitz-free Banach spaces
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (03) : 447 - 460
  • [7] Lipschitz-Free Spaces Over Ultrametric Spaces
    Cuth, Marek
    Doucha, Michal
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1893 - 1906
  • [8] Lipschitz-free spaces and Schur properties
    Petitjean, C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (02) : 894 - 907
  • [9] On Schauder bases in Lipschitz-free spaces
    Hajek, Petr
    Pernecka, Eva
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 629 - 646
  • [10] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Bruno M. Braga
    Javier Alejandro Chávez-Domínguez
    Thomas Sinclair
    [J]. Mathematische Annalen, 2024, 388 : 1053 - 1090