WEAK COMPACTNESS IN LIPSCHITZ-FREE SPACES OVER SUPERREFLEXIVE SPACES

被引:0
|
作者
Silber, Zdenek [1 ]
机构
[1] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
关键词
Lipschitz-free spaces; Schur property; superreflexivity; super weakly compact sets; weak sequential completeness; SUBSETS;
D O I
10.1090/proc/17152
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Lipschitz-free space F(X) over a superreflexive Banach space X has the property that every weakly precompact subset of F(X) is relatively super weakly compact, showing that this space "behaves like L1" in this context. As consequences we show that F(X) enjoys the weak Banach-Saks property and that every subspace of F(X) with nontrivial type is superreflexive. It follows from our results that weakly compact subsets of F(X) are super weakly compact and hence have many strong properties. To prove the result, we use a modification of the proof of weak sequential completeness of F(X) by Kochanek and Perneck & aacute;and an appropriate version of compact reduction in the spirit of Aliaga, Nous, Petitjean and Proch & aacute;zka.
引用
收藏
页码:1723 / 1734
页数:12
相关论文
共 50 条
  • [1] Lipschitz-free spaces over compact subsets of superreflexive spaces are weakly sequentially complete
    Kochanek, Tomasz
    Pernecka, Eva
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (04) : 680 - 696
  • [2] Lipschitz-Free Spaces Over Ultrametric Spaces
    Cuth, Marek
    Doucha, Michal
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1893 - 1906
  • [3] Lipschitz-Free Spaces Over Ultrametric Spaces
    Marek Cúth
    Michal Doucha
    Mediterranean Journal of Mathematics, 2016, 13 : 1893 - 1906
  • [4] On Lipschitz-free spaces over spheres of Banach spaces
    Candido, Leandro
    Kaufmann, Pedro L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)
  • [5] Lipschitz Algebras and Lipschitz-Free Spaces Over Unbounded Metric Spaces
    Albiac, Fernando
    Ansorena, Jose L.
    Cuth, Marek
    Doucha, Michal
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (20) : 16327 - 16362
  • [6] LIPSCHITZ-FREE SPACES OVER PROPERLY METRIZABLE SPACES AND APPROXIMATION PROPERTIES
    Smith, Richard j.
    Talimdjioski, Filip
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (11) : 4821 - 4834
  • [7] Lipschitz-free Banach spaces
    Godefroy, G
    Kalton, NJ
    STUDIA MATHEMATICA, 2003, 159 (01) : 121 - 141
  • [8] Extreme Points in Lipschitz-Free Spaces over Compact Metric Spaces
    Aliaga, Ramon J.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [9] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Braga, Bruno M.
    Chavez-Dominguez, Javier Alejandro
    Sinclair, Thomas
    MATHEMATISCHE ANNALEN, 2024, 388 (01) : 1053 - 1090
  • [10] Extreme Points in Lipschitz-Free Spaces over Compact Metric Spaces
    Ramón J. Aliaga
    Mediterranean Journal of Mathematics, 2022, 19