We show that the Lipschitz-free space F(X) over a superreflexive Banach space X has the property that every weakly precompact subset of F(X) is relatively super weakly compact, showing that this space "behaves like L1" in this context. As consequences we show that F(X) enjoys the weak Banach-Saks property and that every subspace of F(X) with nontrivial type is superreflexive. It follows from our results that weakly compact subsets of F(X) are super weakly compact and hence have many strong properties. To prove the result, we use a modification of the proof of weak sequential completeness of F(X) by Kochanek and Perneck & aacute;and an appropriate version of compact reduction in the spirit of Aliaga, Nous, Petitjean and Proch & aacute;zka.
机构:
Univ Fed Sao Paulo, Inst Ciencia & Tecnol, Av Cesare Giulio Lattes 1201, BR-12247014 Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Av Cesare Giulio Lattes 1201, BR-12247014 Sao Jose Dos Campos, SP, Brazil
Candido, Leandro
Kaufmann, Pedro L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Sao Paulo, Inst Ciencia & Tecnol, Av Cesare Giulio Lattes 1201, BR-12247014 Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Av Cesare Giulio Lattes 1201, BR-12247014 Sao Jose Dos Campos, SP, Brazil