Lipschitz-free spaces and approximating sequences of projections

被引:2
|
作者
Godefroy, Gilles [1 ]
机构
[1] Inst Math Jussieu Paris Rive Gauche, Paris, France
关键词
Lipschitz-free spaces; Absolute extendability; Finite-dimensional decompositions; Bounded approximation properties; FREE BANACH-SPACES; DESCRIPTIVE COMPLEXITY; EXTENSIONS; DECOMPOSITIONS; PROPERTY; SUBSETS; FAMILY; BASES;
D O I
10.1007/s43037-024-00332-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lipschitz-free space F(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}(M)$$\end{document} has an F.D.D. when M is a separable L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_1$$\end{document}-Banach space, or when M subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\subset {\mathbb {R}}<^>n$$\end{document} is a somewhat regular subset. The interplay between the existence of extension operators for Lipschitz maps and the (pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\pi )$$\end{document}-property in Lipschitz-free spaces is investigated. If M is an arbitrary metric space, then F(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}(M)$$\end{document} has the (pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\pi )$$\end{document}-property up to a universal logarithmic factor. It follows in particular that the (pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\pi )$$\end{document}-property up to a logarithmic factor fails to imply the approximation property. A list of commented open problems is provided.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Extreme Points in Lipschitz-Free Spaces over Compact Metric Spaces
    Aliaga, Ramon J.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [42] Extreme Points in Lipschitz-Free Spaces over Compact Metric Spaces
    Ramón J. Aliaga
    Mediterranean Journal of Mathematics, 2022, 19
  • [43] On Projectional Skeletons and the Plichko Property in Lipschitz-Free Banach Spaces
    Antonio J. Guirao
    Vicente Montesinos
    Andrés Quilis
    Mediterranean Journal of Mathematics, 2023, 20
  • [44] Lipschitz-free spaces over manifolds and the metric approximation property
    Smith, Richard J.
    Talimdjioski, Filip
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 524 (01)
  • [45] On Projectional Skeletons and the Plichko Property in Lipschitz-Free Banach Spaces
    Guirao, Antonio J.
    Montesinos, Vicente
    Quilis, Andres
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (06)
  • [46] The numerical index of 2-dimensional Lipschitz-free spaces
    Cobollo, Ch.
    Guirao, A. J.
    Montesinos, V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (01)
  • [47] Lipschitz-Free Spaces over Cantor Sets and Approximation Properties
    Filip Talimdjioski
    Mediterranean Journal of Mathematics, 2023, 20
  • [48] RETRACTED: Compact reduction in Lipschitz-free spaces (Retracted Article)
    Aliaga, Ramon J.
    Nous, Camille
    Petitjean, Colin
    Prochazka, Antonin
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (06) : 1683 - 1699
  • [49] Lipschitz-Free Spaces over Cantor Sets and Approximation Properties
    Talimdjioski, Filip
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (06)
  • [50] Geometry and volume product of finite dimensional Lipschitz-free spaces
    Alexander, Matthew
    Fradelizi, Matthieu
    Garcia-Lirola, Luis C.
    Zvavitch, Artem
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (04)