On Projectional Skeletons and the Plichko Property in Lipschitz-Free Banach Spaces

被引:0
|
作者
Antonio J. Guirao
Vicente Montesinos
Andrés Quilis
机构
[1] Universitat Politècnica de València,Instituto Universitario de Matemática Pura y Aplicada
[2] Czech Technical University in Prague,Department of Mathematics, Faculty of Electrical Engineering
来源
关键词
Lipschitz retractions; projectional skeletons; Plichko; 46B20; 46B26; 51F30;
D O I
暂无
中图分类号
学科分类号
摘要
We study projectional skeletons and the Plichko property in Lipschitz-free spaces, relating these concepts to the geometry of the underlying metric space. Specifically, we identify a metric property that characterizes the Plichko property witnessed by Dirac measures in the associated Lipschitz-free space. We also show that the Lipschitz-free space of all R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document}-trees has the Plichko property witnessed by molecules and define the concept of retractional trees to generalize this result to a bigger class of metric spaces. Finally, we show that no separable subspace of ℓ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty $$\end{document} containing c0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0$$\end{document} is an r-Lipschitz retract for r<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r<2$$\end{document}, which implies in particular that F(ℓ∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}(\ell _\infty )$$\end{document} is not r-Plichko for r<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r<2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] On Projectional Skeletons and the Plichko Property in Lipschitz-Free Banach Spaces
    Guirao, Antonio J.
    Montesinos, Vicente
    Quilis, Andres
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (06)
  • [2] Lipschitz-free Banach spaces
    Godefroy, G
    Kalton, NJ
    [J]. STUDIA MATHEMATICA, 2003, 159 (01) : 121 - 141
  • [3] Octahedrality in Lipschitz-free Banach spaces
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (03) : 447 - 460
  • [4] Banach spaces with projectional skeletons
    Kubis, Wieslaw
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (02) : 758 - 776
  • [5] On Lipschitz-free spaces over spheres of Banach spaces
    Candido, Leandro
    Kaufmann, Pedro L.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)
  • [6] Lipschitz-free spaces over manifolds and the metric approximation property
    Smith, Richard J.
    Talimdjioski, Filip
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 524 (01)
  • [7] ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES
    Cuth, Marek
    Doucha, Michal
    Wojtaszczyk, Przemyslaw
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 3833 - 3846
  • [8] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Braga, Bruno M.
    Chavez-Dominguez, Javier Alejandro
    Sinclair, Thomas
    [J]. MATHEMATISCHE ANNALEN, 2024, 388 (01) : 1053 - 1090
  • [9] Lipschitz-Free Spaces Over Ultrametric Spaces
    Cuth, Marek
    Doucha, Michal
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1893 - 1906
  • [10] Lipschitz-free spaces and Schur properties
    Petitjean, C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (02) : 894 - 907