Lipschitz-free spaces and approximating sequences of projections

被引:0
|
作者
Godefroy, Gilles [1 ]
机构
[1] Inst Math Jussieu Paris Rive Gauche, Paris, France
关键词
Lipschitz-free spaces; Absolute extendability; Finite-dimensional decompositions; Bounded approximation properties; FREE BANACH-SPACES; DESCRIPTIVE COMPLEXITY; EXTENSIONS; DECOMPOSITIONS; PROPERTY; SUBSETS; FAMILY; BASES;
D O I
10.1007/s43037-024-00332-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lipschitz-free space F(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}(M)$$\end{document} has an F.D.D. when M is a separable L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}_1$$\end{document}-Banach space, or when M subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\subset {\mathbb {R}}<^>n$$\end{document} is a somewhat regular subset. The interplay between the existence of extension operators for Lipschitz maps and the (pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\pi )$$\end{document}-property in Lipschitz-free spaces is investigated. If M is an arbitrary metric space, then F(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}(M)$$\end{document} has the (pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\pi )$$\end{document}-property up to a universal logarithmic factor. It follows in particular that the (pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\pi )$$\end{document}-property up to a logarithmic factor fails to imply the approximation property. A list of commented open problems is provided.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Lipschitz-free spaces and approximating sequences of projections
    Gilles Godefroy
    Banach Journal of Mathematical Analysis, 2024, 18
  • [2] Projections in Lipschitz-free spaces induced by group actions
    Cuth, Marek
    Doucha, Michal
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) : 3301 - 3317
  • [3] Lipschitz-free Banach spaces
    Godefroy, G
    Kalton, NJ
    STUDIA MATHEMATICA, 2003, 159 (01) : 121 - 141
  • [4] ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES
    Cuth, Marek
    Doucha, Michal
    Wojtaszczyk, Przemyslaw
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 3833 - 3846
  • [5] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Braga, Bruno M.
    Chavez-Dominguez, Javier Alejandro
    Sinclair, Thomas
    MATHEMATISCHE ANNALEN, 2024, 388 (01) : 1053 - 1090
  • [6] Lipschitz-Free Spaces Over Ultrametric Spaces
    Cuth, Marek
    Doucha, Michal
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 1893 - 1906
  • [7] Lipschitz-free spaces and Schur properties
    Petitjean, C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (02) : 894 - 907
  • [8] Octahedrality in Lipschitz-free Banach spaces
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (03) : 447 - 460
  • [9] On Schauder bases in Lipschitz-free spaces
    Hajek, Petr
    Pernecka, Eva
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 629 - 646
  • [10] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces
    Bruno M. Braga
    Javier Alejandro Chávez-Domínguez
    Thomas Sinclair
    Mathematische Annalen, 2024, 388 : 1053 - 1090