INVARIANT TORI FOR THE HAMILTONIAN DERIVATIVE WAVE EQUATION WITH HIGHER ORDER NONLINEARITY

被引:0
|
作者
Gao, Meina [1 ]
机构
[1] Shanghai Polytech Univ, Sch Math Phys & Stat, Shanghai 201209, Peoples R China
基金
中国国家自然科学基金;
关键词
KAM theory; invariant tori; Hamiltonian derivative nonlinear wave equation; QUASI-PERIODIC SOLUTIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; KAM THEOREM; PERTURBATIONS;
D O I
10.3934/cpaa.2023033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will study the Hamiltonian derivative wave equation with higher order nonlinearity ytt - yxx + my + (Dy)(5) = 0, x is an element of T :- R/2 pi Z, where m > 0 is a potential and D := root -partial derivative xx + m. We will prove that, for any integer b >= 2, the above equation admits many small amplitude quasi-periodic solutions corresponding to b -dimensional invariant tori of an associated infinite dimensional Hamiltonian system. The proof is based on infinite dimensional KAM theory and partial Birkhoff normal form.
引用
收藏
页码:1429 / 1455
页数:27
相关论文
共 50 条
  • [31] Persistence of invariant tori on submanifolds in Hamiltonian systems
    Chow, SN
    Li, Y
    Yi, Y
    JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (06) : 585 - 617
  • [32] Weakly mixing invariant tori of Hamiltonian systems
    Knill, O
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 204 (01) : 85 - 88
  • [33] Quasi-periodic solutions for 1D wave equation with higher order nonlinearity
    Gao, Meina
    Liu, Jianjun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1466 - 1493
  • [34] Invariant tori for a fifth order nonlinear partial differential equation with unbounded perturbation
    Cui, Wenyan
    Mi, Lufang
    Zhang, Jumei
    Yin, Li
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2018, 15 (03) : 183 - 199
  • [35] Invariant tori for the cubic Szegö equation
    Patrick Gérard
    Sandrine Grellier
    Inventiones mathematicae, 2012, 187 : 707 - 754
  • [36] Invariant tori for the cubic Szego equation
    Gerard, Patrick
    Grellier, Sandrine
    INVENTIONES MATHEMATICAE, 2012, 187 (03) : 707 - 754
  • [37] Invariant tori of nonlinear Schrodinger equation
    Gao, Yixian
    Li, Yong
    Zhang, Jin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (08) : 3296 - 3331
  • [38] A blow-up result for a semilinear wave equation with scale-invariant damping and mass and nonlinearity of derivative type
    Palmieri, Alessandro
    Tu, Ziheng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (02)
  • [39] Hamiltonian bifurcations of invariant tori with a vanishing Floquet exponent
    Hanssmann, H
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 732 - 737
  • [40] Some optical solutions to the higher-order nonlinear Schrodinger equation with Kerr nonlinearity and a local fractional derivative
    Nonlaopon, Kamsing
    Kumar, Sachin
    Rezaei, S.
    Bayones, Fatimah S.
    Elagan, S. K.
    RESULTS IN PHYSICS, 2022, 36