Invariant tori for the cubic Szego equation

被引:30
|
作者
Gerard, Patrick [2 ]
Grellier, Sandrine [1 ]
机构
[1] Univ Orleans, Federat Denis Poisson, MAPMO UMR 6628, Dept Math, F-45067 Orleans 2, France
[2] Univ Paris 11, UMR 8628, CNRS, Lab Math Orsay, F-91405 Orsay, France
关键词
SCHRODINGER; VARIABLES;
D O I
10.1007/s00222-011-0342-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of the following Hamiltonian equation on the Hardy space of the circle, i partial derivative(t)u = Pi(vertical bar u vertical bar(2)u), where Pi denotes the Szego projector. This equation can be seen as a toy model for totally non dispersive evolution equations. In a previous work, we proved that this equation admits a Lax pair, and that it is completely integrable. In this paper, we construct the action-angle variables, which reduces the explicit resolution of the equation to a diagonalisation problem. As a consequence, we solve an inverse spectral problem for Hankel operators. Moreover, we establish the stability of the corresponding invariant tori. Furthermore, from the explicit formulae, we deduce the classification of orbitally stable and unstable traveling waves.
引用
收藏
页码:707 / 754
页数:48
相关论文
共 50 条
  • [1] Invariant tori for the cubic Szegö equation
    Patrick Gérard
    Sandrine Grellier
    Inventiones mathematicae, 2012, 187 : 707 - 754
  • [2] THE CUBIC SZEGO EQUATION
    Gerard, Patrick
    Grellier, Sandrine
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2010, 43 (05): : 761 - 810
  • [3] AN EXPLICIT FORMULA FOR THE CUBIC SZEGO EQUATION
    Gerard, Patrick
    Grellier, Sandrine
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (04) : 2979 - 2995
  • [4] THE CUBIC SZEGO EQUATION AND HANKEL OPERATORS
    Gerard, Patrick
    Grellier, Sandrine
    ASTERISQUE, 2017, (389) : 1 - +
  • [5] Invariant tori of the Duffing equation
    Yu. N. Bibikov
    M. V. Pirogov
    Differential Equations, 2006, 42 : 1069 - 1075
  • [6] Invariant tori of the duffing equation
    Bibikov, Yu. N.
    Pirogov, M. V.
    DIFFERENTIAL EQUATIONS, 2006, 42 (08) : 1069 - 1075
  • [7] On the radius of analyticity of solutions to the cubic Szego equation
    Gerard, Patrick
    Guo, Yanqiu
    Titi, Edriss S.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (01): : 97 - 108
  • [8] Invariant tori of nonlinear Schrodinger equation
    Gao, Yixian
    Li, Yong
    Zhang, Jin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (08) : 3296 - 3331
  • [9] TRAVELING WAVES FOR THE CUBIC SZEGO EQUATION ON THE REAL LINE
    Pocovnicu, Oana
    ANALYSIS & PDE, 2011, 4 (03): : 379 - 404
  • [10] Unbounded Hankel operators and the flow of the cubic Szego equation
    Gerard, Patrick
    Pushnitski, Alexander
    INVENTIONES MATHEMATICAE, 2023, 232 (03) : 995 - 1026